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The coronavirus disease 2019 (COVID-19) pandemic 
caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) has already infected millions of people glob-

ally. To cope with this unprecedented crisis, scientists from dif-
ferent disciplines have worked collaboratively to develop various 
strategies. Among these, vaccines are the most effective strategies 
to prevent infection by SARS-CoV-2, because our own immune 
system is the most important line of defence against the infection 
of new viral strains1–3. Until now, several vaccines based on dif-
ferent technologies, including messenger RNA, protein subunit, 
adenoviral-vectored and whole-cell inactivated virus vaccines, have 
been deployed worldwide4. While most have a protective efficacy 
of 50–80%, the two lipid nanoparticle (LNP)-based mRNA vac-
cines from Moderna5 and Pfizer–BioNTech6 (mRNA-1273 and 
BNT162b2, respectively) have shown much greater protective effi-
cacy, of 94.1% and 95%, respectively. These two mRNA vaccines are 
currently the most widely used, demonstrating the pivotal role of 
nanotechnology in the response to the COVID-19 pandemic7.

With the large-scale rollout of the COVID-19 vaccines in many 
regions, the number of cases of COVID-19 has remarkably declined 
over time. However, new waves of COVID-19 caused by emerging 
SARS-CoV-2 variants have posed new risks to global public health. 
So far, the World Health Organization (WHO) has designated 
five SARS-CoV-2 variants of concern: B.1.1.7 (Alpha), B.1.351 
(Beta), P.1 (Gamma), B.1.617.2 (Delta) and B.1.1.529 (Omicron)8. 
Accumulating evidence indicates that these new variants have 
increased transmissibility and virulence along with reduced neu-
tralization, making them even more troublesome and dangerous9. 

Clinical data have shown that several currently deployed vaccines 
demonstrate significantly lower protective efficacy against these 
new variants. Therefore, the crisis arising from the existing and 
emerging SARS-CoV-2 variants increases the demands for novel 
strategies.

The SARS-CoV-2 variants
The emergence of SARS-CoV-2 variants of concern. SARS-CoV-2 
is an ~29-kilobase single-stranded positive RNA virus with a muta-
tion rate of two single-letter mutations per month, which is relatively 
slow compared with other RNA viruses owing to its proofreading 
capabilities (Fig. 1a)10,11. However, due to its rapid spread, more than 
4,000 variants have been reported12. Currently, the major concern 
regarding certain variants is their capability to hamper the immu-
nity created by vaccines or previous infection13. The WHO ranks 
variants as follows, in order of increasing demand for attention and 
action: variants under monitoring, variants of interest (VOI) and 
variants of concern (VOC). VOI and VOC are categorized on the 
basis of genetic changes predicted or known to affect transmissibil-
ity, disease severity, immune escape, and therapeutic and diagnostic 
escape. Once these predictions manifest on a global scale, variants 
are reclassified as VOC. Currently, five variants are considered VOC 
and two are considered VOI (Table 1).

While most variant strains carry several mutations, the most 
studied and worrying mutations are located in the SARS-CoV-2 
spike (S) protein14. The S protein comprises >1,200 amino acids, yet 
only a small 25-amino acid stretch mediates the interactions between 
its receptor-binding domain (RBD) and the angiotensin-converting 
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enzyme 2 (ACE2) receptor of the host cells. Mutations in and 
around this interaction area have been noted in all VOC (Fig. 1b)15. 
Furthermore, RBD mutations have the greatest effect on the ability 
of antibodies to neutralize the virus16. In the early emerging vari-
ants, that is, before Omicron, <3% of the residues in the S protein 
have mutated, yet this handful of mutations is suspected of severely 
reducing the function of the neutralizing antibodies17,18.

SARS-CoV-2 variants are exacerbating the pandemic. To deter-
mine how variants are affecting the pandemic, institutes and gov-
ernments are required to piece together epidemiological data on 
variant spread and laboratory data on how efficient sera samples 
from vaccinated and previously infected individuals are at neutral-
izing the specific variant12. While in vitro assays generally yield 
similar trends across studies, they can be inconsistent, because 
different studies use different cell and pseudovirus systems14,19,20. 
Furthermore, while T-cell responses are proposed to play a crucial 
protective role, they are rarely considered in studies addressing 
viral immune evasion. In contrast to epitopes responsible for anti-
body production, T-cell epitopes are located along the full length 
of the S protein. This suggests a limited effect of viral mutations on  
cellular immunity11.

How the immunity provided by the vaccines and previous 
infection is stacking up against the new VOCs is of high interest. 
Notable mutations include D614G, N501Y, K417N, E484K, L452R 
and P681H. Among these, the L452R and E484K mutations can 
dramatically reduce the neutralizing capacity of antibodies and 
help evade previous immunity from infected or vaccinated indi-
viduals’ sera16,17,21. Although the RBD region is studied the most, the 
N-terminal domain (NTD) also harbours potential targets for anti-
body neutralization15. This can perhaps explain why the Beta and 
Gamma strains demonstrate a different profile when tested against 
immunized sera, even though they have the same RBD muta-
tions22. Furthermore, it is important to consider that some common 
mutations in the same variant can synergistically induce a more  
severe effect16.

Currently, sera with high titres of neutralizing antibodies 
post-infection or -vaccination are capable of neutralizing all cur-
rent VOCs20,23,24. If, as suggested, high titres of neutralizing antibod-
ies elicited by current vaccines or previous infections protect from 
infection against all variants, the next important topic to address is 

waning immunity. Vaccines have induced high titres of virus-specific 
neutralizing antibodies that, as expected, decline over time13,16. For 
example, data on the duration of BNT162b2 mRNA vaccine protec-
tion demonstrate that neutralizing antibody levels rapidly decreased 
in the first 3 months after vaccination, followed by a more gradual 
decrease. It was concluded that, although the humoral response 
substantially decreased 6 months post-vaccination with BNT162b2, 
it remains quite potent at preventing severe disease even facing the 
Delta variants (clinical trial number NCT04368728)25–27.

The B.1.1.529 Omicron variant, designated a VOC on 26 
November 2021, was the last variant to make the headlines. 
Omicron gained attention because it has over 30 S-protein muta-
tions, 15 of which are located in the RBD, and spreads rapidly28–31. 
Furthermore, Omicron possesses mutations in its RNA-dependent 
RNA polymerase and its main protease, both of which are targets 
of antiviral intervention31. While most of these mutations had 
already been recorded separately in previous strains and confer 
enhanced viral transmission and immune evasion, their simultane-
ous appearance in a single strain accompanied by new mutations 
is concerning. Accordingly, Omicron demonstrates an enhanced 
ability to escape previous immunity established by vaccines or 
natural infections, and can evade a large number of monoclonal  
antibody therapies29,32–34.

Nanotechnology solutions for the SARS-CoV-2 variant 
challenge
SARS-CoV-2 infects through the binding of its S protein to the 
ACE2 receptor expressed on host cells. The increase in transmission 
and decrease in antibody neutralization of SARS-CoV-2 variants are 
closely related to the mutations in their S protein. Thus, targeting 
the S protein of the variants to inhibit the interaction with ACE2 
receptors could be the most straightforward and promising strategy. 
Nanotechnology offers various solutions, including nanoparticle 
(NP) vaccine-elicited neutralizing antibodies, engineered neutral-
izing antibodies and ACE2-based nanodecoys.

Eliciting neutralizing antibodies using NP-based vaccines. 
Mounting evidence indicates that vaccines are the most efficient 
solution to mitigate the transmission of SARS-CoV-2. Compared 
with the mature and widely employed live-attenuated or inactivated 
vaccines, NP-based vaccines, in particular mRNA-LNP vaccines35,36, 
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Fig. 1 | SARS-CoV-2 variants of concern. a, The structure of SARS-CoV-2, showing the major components, including the S protein, nucleocapsid protein, 
envelope protein, membrane protein and viral RNA. The locations of the RBD and NTD in the S protein are highlighted. b, SARS-CoV-2 VOC. The key 
S-protein mutations in each variant are presented. Protein Data Bank ID: 7DWZ.
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have key advantages, including modularity, rapid manufacturing 
and high efficacy37. Indeed, Moderna launched the phase I clini-
cal trial of an LNP-based mRNA vaccine (mRNA-1273) in a record 
time of 63 days after sequence selection.

Much of the discussion surrounding vaccine efficacy revolves 
around T follicular helper (TFH) cells. These are a unique sub-
set of CD4+ T cells that are required for the development of ger-
minal centre (GC) responses and facilitate immunoglobulin 
class switch, affinity maturation and long-term B-cell memory  

persistence38. Therefore, antigen-specific TFH cells are crucial for the 
development of a sustained, broadly protective antibody response. 
Nucleoside-modified mRNA-LNP vaccines are known to induce 
high levels of antigen-specific TFH and GC B cells39. Interestingly, 
mRNA-LNP vaccines outperform inactivated virus vaccines, adju-
vanted protein vaccines and live pathogen infection in terms of TFH 
cell abundance and induction of long-lived plasma and memory  
B cells40. It is suggested that this is driven by the robust and sustained 
antigen production from encoded mRNA, as well as the adjuvant 

Table 1 | The SARS-CoV-2 variants

WHO 
nomenclature

Lineage Date of 
designation as 
VOC or VOI

Notable 
mutations

Variant enhancement How it a"ects current immunity/
vaccine protection

References

VOC Alpha B.1.1.7 December 2020 N501Y Enhanced transmission
~50% increase in 
transmissibility
Enhanced affinity to 
ACE2

In vitro: 3–6-fold reduction of 
viral neutralization by neutralizing 
antibodies from infected and 
vaccinated sera
Vaccine protection efficacy: 
86–90% mRNA vaccines, 70–75% 
viral vector vaccines

12,14,15,23,134,135

Beta B.1.351 December 2020 K417N, E484K, 
N501Y

Increased affinity to 
ACE2 (19-fold compared 
with original strain)
~25% increase in 
transmissibility

In vitro: greatest fold reduction of 
viral neutralization by neutralizing 
antibodies from infected and 
vaccinated sera compared with all 
other variants
Vaccine protection efficacy: 75% 
BNT162b2 (Pfizer–BioNTech mRNA 
vaccine), 57–72% Ad26.COV2-S 
(Johnson & Johnson viral vector), 
10% AZD1222 (AstraZeneca–
University of Oxford viral vector)

14,15,22,23,134,135

Gamma P.1 January 2021 K417T, E484K, 
N501Y

Increased affinity to 
ACE2 (19-fold compared 
with original strain)

In vitro: reduction of viral 
neutralization by neutralizing 
antibodies from infected and 
vaccinated sera
Vaccine protection efficacy: 
unknown

14,15,134–136

Delta B.1.617.2 May 2021 L452R, T478K, 
P681R

Increased replication 
efficacy
Increased cell entry
Modest increase 
in binding affinity 
compared with original 
strain
~97% increase in 
transmissibility

In vitro: reduction of viral 
neutralization by neutralizing 
antibodies from infected and 
vaccinated sera
Vaccine protection efficacy: 
67.74% for viral vectors, 77.4% for 
mRNA vaccines

15,23,135,137

Omicron B.1.1.529 November 2021 Δ69–70, T95I, 
K417N, T478K, 
N501Y, N655Y, 
N679K, P681H, 
R346K, Q493R, 
G496S

Increased 
transmissibility
Higher percentage of 
infection in individuals 
previously infected or 
vaccinated

In vitro: severely reduced viral 
neutralization by neutralizing 
antibodies from infected and 
vaccinated sera
Approximate vaccine protection 
efficiency: mRNA vaccines after 
boost: 88% for BNT162b2, 85% 
for mRNA-1273, mixed reports 
regarding Ad26.COV2.S (Johnson 
& Johnson)- and ChAdOx1-S 
(Oxford/AstraZeneca)-vaccinated 
individuals

28,29,32,46,47, 
130,138–142

VOI Lambda C.37 June 2021 L452Q, F490S, 
(Δ246–252)

Reduction of viral neutralization by 
infected and vaccinated sera

135,143

Mu B.1.621 August 2021 R346K, E484K, 
K417N, N501Y, 
P681H

Contradicting reports on escape 
from neutralizing antibodies in vitro

15,135,144
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follicle to form GCs and (4) GC TFH cells provide essential signals 
to B cells and drive the selection of high-affinity B-cell clones and 
the generation of memory B cells38. The initial dendritic cell pre-
sentation of SARS-CoV-2 antigen can be derived either from the 
presentation of processed live viral antigen or from antigen encoded 
in the mRNA of the vaccine. Regarding SARS-CoV-2 infections, 
elevated numbers of activated TFH cells are detected in the blood 
of non-severely affected patients and in the lymph nodes of rhesus 
macaques following SARS-CoV-2 infection. Importantly, a corre-
lation exists between elevated activated circulating TFH levels and 
low disease severity. These antigen-specific circulating TFH cells are 
reported to persist for at least 6 months post-infection38.

Despite the high efficacy of these mRNA vaccines against 
the original SARS-CoV-2 strain, their efficacy against the newly 

effect elicited by both the mRNA and LNPs themselves41. The ioniz-
able lipid in the LNP formulation drives early cytokine production 
in the draining lymph nodes after intramuscular administration, 
most importantly through interleukin-6 signalling. This rapid 
spike in interleukin-6 concentration is critical for the induction of 
the downstream effectors that drive the TFH and GC responses41. 
Although the mRNA in the LNP has been modified to reduce sens-
ing by pathogen recognition receptors, it yields cytokine responses 
that support, to some extent, the generation of TFH cells. The gen-
eral scheme of TFH-cell differentiation unfolds as follows: (1) prim-
ing of naïve CD4+ T cells in the spleen or draining lymph nodes by 
antigen-presenting dendritic cells, (2) TFH differentiation following 
expression of costimulatory molecules and migration to the T cell/B 
cell border, (3) antigen-dependent T and B cells relocate to the  
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individuals 18 years of age and older. Recent studies showed that 
administration of a third booster dose of Pfizer’s BNT162b2 or 
Moderna’s mRNA-1273 vaccine to solid organ transplant recipients 
substantially elevated the immunogenicity of the vaccine in terms 
of SARS-CoV-2 antibodies43,44, suggesting the robust potential of a 
booster dose against SARS-CoV-2 variants. Indeed, in another study, 
a third booster dose of the BNT162b2 vaccine greatly increased the 
magnitude and breadth of the neutralization of SARS-CoV-2, as 
well as the Beta and Delta variants45. Despite the current prevalence 
of the highly contagious, mutated Omicron variant, a third or even 
more booster doses of the mRNA-1273 or BNT162b2 vaccine might 
still induce potent neutralizing antibodies against Omicron and 
provide protection against it, despite reduced efficacy46–48.

Another strategy proposed by Moderna to cope with the 
SARS-CoV-2 variants is to develop updated mRNA vaccines49. To 
this end, a modified version of the prototype mRNA-1273 vaccine, 
named mRNA-1273.351, containing the genetic sequence of the S 
protein of the Beta variant has been developed (Fig. 2a)50. While a 
third dose boosting with both mRNA-1273 and mRNA-1273.351 
elicited increasing neutralization titres against the variants, the lat-
ter appeared to yield numerically higher neutralizing antibody titres 
against the Beta variant. The S protein of SARS-CoV-2 contains the 
major immunogenic domains, including the RBD, NTD and sub-
unit 2 (S2)51,52. Instead of encoding the full length of the S protein, a 
chimeric S mRNA vaccine encoding RBD, NTD and S2 from both 
SARS-CoV and SARS-CoV-2 produced efficient neutralizing anti-
bodies against newly emergent SARS-CoV-2 variants53. One con-
cern regarding the two current mRNA vaccines is the requirement 
for an extremely low storage temperature54, which greatly limits 
the wider deployment of the vaccines. One attempt to address this 
issue is the development of an LNP-based circular RNA vaccine  
(Fig. 2a)55. Administration of the circular RNA vaccine containing 
the RBDs of SARS-CoV-2 variants (Delta and Omicron) to mice and 
monkeys showed effective protection against the variants, including 
Delta and Omicron. Compared with the linear mRNA-based vac-
cines, the circular RNA vaccines exhibit higher stability because of 
their special circular structure, which cannot be easily degraded 
by the nuclease. Lyophilization of mRNA-LNPs is another pos-
sible solution, although some consider that process too expensive 
and time consuming37. Furthermore, it has recently been suggested 
that nucleic acid vaccines may be concealing ‘hitchhiker’ proteins 
encoded on overlapping open reading frames (ORFs) within the 
sequences. For example, it has been reported that there are other 
ORFs that overlap the SARS-CoV-2 S sequence. Therefore, the 
sequences encoded need to be screened to exclude the translation 
of undesired peptides that could alter clinical outcomes. This com-
plication of nucleic acid vaccines can be circumvented by the use of 
traditional vaccine platforms or protein-based vaccines56.

Aside from LNP-based vaccines, novel protein NP vaccines have 
also been studied for combating SARS-CoV-2 variants (Fig. 2b). 
An RBD-24-mer NP vaccine was developed by attaching 24 sortase 
A-tagged RBDs to the surface of ferritin (Fig. 2c)57. Sortase A was 
used as a linker to conjugate the RBD and ferritin scaffold through 
a sortase A reaction58. Ferritin was employed as the scaffold due 
to its ability to self-assemble into octahedral particles that contain 
three-fold axes on the particle surface, allowing for the orderly dis-
play of various viral antigens59. Given that RBD antibodies have been 
demonstrated to cross-neutralize SARS-CoV, SARS-CoV-2 and bat 
coronaviruses60, RBD-based vaccines may elicit cross-neutralizing 
antibodies that target the RBD of SARS-CoV-2 and its variants. 
The immunization of macaques with RBD-24-mer NP vaccines 
induced extremely high titres of neutralizing antibodies against 
more transmissible or neutralization-resistant SARS-CoV-2 
variants, including Alpha, Beta and Gamma. Similarly, another 
protein NP vaccine (denoted the RBD-20-mer NP vaccine) con-
sisting of 20 SARS-CoV-2 RBD subunits was prepared using a  

emerging SARS-CoV-2 variants is compromised due to multiple 
mutations in the S protein of the virus. Thus, several strategies 
have been developed or proposed to update current mRNA-LNP 
vaccines or create new mRNA-LNP vaccines (Fig. 2a), aiming to 
induce higher levels of neutralizing antibodies that can more effi-
ciently bind to the mutated S protein and subsequently neutralize 
SARS-CoV-2 variants. After injection, mRNA-LNPs are internal-
ized by antigen-presenting cells, where mRNA is translated into 
the S-protein antigen by the ribosome (Fig. 2b)42. The resulting 
S-protein antigen is subsequently degraded to antigen fragments to 
activate CD8+ T cells; in the meantime, endocytosis of the secreted 
S-protein antigen activates CD4+ T cells and B cells for the produc-
tion of neutralizing antibodies. Given that waning vaccine-elicited 
immunity is one of the major reasons for decreased vaccine effi-
cacy against SARS-CoV-2 variants, enhancing vaccine-elicited 
immunity by a third booster dose of the current vaccines is the 
most straightforward and widely proposed strategy to address this 
issue. Consequently, the Food and Drug Administration authorized 
a single booster dose of the Pfizer or Moderna mRNA vaccine for 

Linker

Trimerization
domain

Nanobody
trimer

J chain

IgM
pentamerNanobody

Nanobody
hexamer

IgG Fc

ACE2
microbody

293T
nanodecoy

LSC
nanodecoy

Glycan
THP-1
nanodecoy

Heparin

293T/
THP-1
nanodecoy

Non-
infection

Class I,
II and III

V

E

Nanobody
dimer

PLGA
core

EV
nanodecoy

dc

Engineered antibody

Nanodecoy

a

b

Host cell

ACE2

SARS-CoV-2 variants 

Infection

Fig. 3 | Targeting the S protein of variants with engineered neutralizing 
antibodies and ACE2-based nanodecoys. a, Engineered neutralizing 
antibodies: a single nanobody, a nanobody hexamer containing an IgG 
Fc, a nanobody dimer consisting of two nanobodies (V and E) targeting 
two independent epitopes, a nanobody trimer containing linkers and a 
trimerization domain, and an IgM pentamer containing a J chain.  
b, ACE2-based nanodecoys: an ACE-2 microbody consisting of two ACE2 
receptors, EV-based nanodecoys and nanodecoys based on different cell 
membranes, such as 293T, LSC, 293T/THP-1 and glycan THP-1. In some 
cases, a poly(lactic-co-glycolic acid) (PLGA) core can be included.  
c, SARS-CoV-2 variants infect host cells through ACE2 receptors.  
d, Engineered neutralizing antibodies and ACE2-based nanodecoys inhibit 
the binding of the virus to ACE2, protecting host cells from infection.

NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology



PERSPECTIVE NATURE NANOTECHNOLOGY

Tag/Catcher platform represents a versatile and efficient technology. 
This is a split-protein conjugation system for the covalent anchoring 
of vaccine antigens onto virus or capsid-like particles upon mixing 
in solution. This system has been reported to achieve complete and 
even decoration of the NP surface and yield high antibody titres 
against displayed antigens65.

Targeting the S protein of variants with engineered neutral-
izing antibody. In addition to targeting the S protein of variants 
with vaccine-induced neutralizing antibodies, variant S proteins 
can also be directly targeted with engineered neutralizing anti-
bodies. While producing vaccine-induced neutralizing antibodies 
in immunocompromised individuals might prove inefficient, the 
application of engineered neutralizing antibodies could solve the 
problem. However, most highly effective conventional antibodies 
for SARS-CoV-2 show significantly less efficacy against emerging 
SARS-CoV-2 variants. One solution might be to develop highly effi-
cient nanobodies against the variants. Nanobodies, antigen binding 
domains derived from camelid single-chain antibodies, are smaller 
than conventional antibodies (15 kDa versus 50 kDa), enabling 
them to bind to virus epitopes not usually accessible to conventional 
antibodies68. Nanobodies can be manufactured at scale through 
inexpensive but efficient microbial production. Meanwhile, the 
high stability of nanobodies enables them to survive the nebuli-
zation process, allowing them to be administered by inhalation, a 
highly attractive route of administration for tackling various respi-
ratory viruses69,70. In particular, monomeric nanobodies can be 
conveniently engineered to multivalent nanobody conjugates that 
normally display improved efficacy71,72.

To target the S protein of the variants, three classes of nanobod-
ies (I, II and III) were produced (Fig. 3a)73. A mechanistic study 
revealed that these nanobodies neutralize the SARS-CoV-2 vari-
ants through multiple mechanisms. Class I nanobodies, ultrapotent 
neutralizers for SARS-CoV-2, target ACE2 binding sites and disrupt 
the binding of the virus to the ACE2 receptor. Class II nanobod-
ies are especially interesting, because they bind to the highly con-
served epitopes of the S protein, retaining potent binding activity 
against the VOCs. Class III nanobodies use a different neutralizing 
mechanism from other classes by recognizing unique epitopes usu-
ally inaccessible to conventional antibodies. The efficacy of mono-
meric nanobodies can be further improved by engineering them 
to multivalent nanobodies. A llama nanobody hexamer (linked 
homotrimers), a protein conjugate that consists of six nanobodies, 
displayed ultrapotent neutralization activity against SARS-CoV-2 
variants, while the monomeric form of the nanobody was unable to 
neutralize some of the variants (Fig. 3a)74. Further analysis indicated 
that the multivalent llama nanobody hexamer potently neutralized 
the SARS-CoV-2 variants probably by promoting the avidity for the 
ACE2 binding domain, simultaneous binding to multiple S, block-
ing the binding of ACE2 to RBD or recognizing the conserved epit-
opes that are normally difficult to access by conventional antibodies. 
Similarly, a nanobody dimer, consisting of nanobody V and E tar-
geting two independent epitopes of the RBD, largely suppressed the 
escape of SARS-CoV-2 variants from neutralization (Fig. 3a)75,76. 
Mechanistically, the nanobody dimer induced and stabilized the 
RBD trimers in an active conformation with all RBDs in the ‘up’ 
conformation, preventing their binding to ACE2 receptors. More 
importantly, this active conformation of the RBD further triggered 
their premature cleavage and irreversibly inactivated the cell fusion 
ability of the S protein. These studies are particularly interesting 
because they demonstrate that displaying the ineffective neutraliz-
ing nanobodies for SARS-CoV-2 variants on a well-designed nano-
structure may create a multivalent nanobody NP that is ultrapotent 
against the variants.

Given the trimeric structures of the S proteins of SARS-CoV-2 
and its variants, it is reasonable to speculate that a nanobody trimer 

computationally designed self-assembling protein NP (Fig. 2c)61,62. 
The administration of RBD-20-mer NP vaccines to non-human pri-
mates produced potent neutralizing antibodies targeting a panel of 
the human immunodeficiency virus and vesicular stomatitis virus 
pseudotyped SARS-CoV-2 variants. The two protein NP vaccines 
described above use RBDs as immunogens, while in another study63, 
a rationally designed highly immunogenic heptad repeat 2-deleted 
glycine-capped (S2GΔHR2) S2 was employed in the construction 
of a protein NP vaccine. The protein vaccine (denoted SApNP) was 
constructed through the self-assembly of S2GΔHR2 S and other 
protein-based building blocks63,64. Immunization of mice with the 
SApNP vaccine elicited potent neutralizing antibodies that were 
able to neutralize the original SARS-CoV-2 and its variants (Alpha, 
Beta, Gamma and Delta) with the same potency. Furthermore,  
several particle-based antigen display strategies for the design of 
modular vaccine platforms have been described65–67. Of these, the 
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lung spheroid cell (LSC) line was employed (Fig. 3b)85. In mice, the 
inhalation of LSC nanodecoys 1 day after SARS-CoV-2 mimic virus 
infection showed obvious accumulation in the lungs, yielding accel-
erated clearance of SARS-CoV-2 mimics from the lungs from day 2 to 
day 6. Furthermore, in a non-human primate model challenged with 
SARS-CoV-2 on day 0, the inhalation of four doses of LSC nanode-
coys on days 2, 3, 4 and 5 greatly enhanced the clearance of the virus 
and mitigated lung injury when analysed on day 8. Several mecha-
nisms might be responsible for these post-infection therapeutic 
effects of LSC nanodecoys. As not all the viruses were internalized by 
the host cells 1 or 2 days after viral exposure, nanodecoys could pre-
vent the remaining viruses from entering the cells. Furthermore, the 
endocytosized nanodecoys could also bind to intracellular viruses, 
reducing further infection. To further strengthen the ability of nano-
decoys to combat SARS-CoV-2, hybrid cell membranes can be used. 
For example, a 293T/THP-1 nanodecoy has been developed by fus-
ing cell membranes from genetically engineered ACE2-expressing 
293T cells and cytokine receptor-expressing human myeloid mono-
nuclear THP-1 cells (Fig. 3b)86. In this design, the ACE2 and cyto-
kine receptors of nanodecoys concurrently sequestered SARS-CoV-2 
and the related inflammatory cytokines, including interleukin-6 
and granulocyte-macrophage colony-stimulating factor. All the 
cell membrane nanodecoys described above have a hollow spheri-
cal structure. However, a polymer core can also be introduced to 
facilitate the formation of nanodecoys and the display of ACE2 
receptors. For instance, a THP-1 nanodecoy prepared by coating 
ACE2-rich THP-1 cell membranes onto polymeric cores made from 
poly(lactic-co-glycolic acid) exhibited excellent sequestration abil-
ity against SARS-CoV-2 and protected cells from viral infection87. 
In addition, the sequestration ability of the THP-1 nanodecoys can 
be further enhanced by introducing heparin (denoted glycan THP-1 
nanodecoys) at their surface (Fig. 3b)88.

Besides these cell membrane-based nanodecoys, mRNA 
NPs encoded by ACE2 receptor mimics capable of generating 
soluble ACE2 decoys in situ efficiently inhibited the binding of 
SARS-CoV-2 to ACE2 receptors89,90. Despite the fact that several 
soluble ACE2 (recombinant) decoys have entered clinical trials 
and shown sequestering efficacy against SARS-CoV-291,92, a short 
half-life might limit further improvement in their efficacy93. Apart 
from serving as a receptor for SARS-CoV-2, ACE2 also plays a key 
role in the renin–angiotensin system94. Therefore, one concern 
regarding the exogenous administration of soluble ACE2 decoys is 
the possibility of reduced blood pressure and inflammation owing 
to a downregulated renin–angiotensin system95,96. Although sev-
eral ACE2-based nanodecoys have proven quite capable in fight-
ing against SARS-CoV-2 and its variants, their performance can 
be further improved using engineered ACE2 receptors that possess 
a higher binding affinity to the virus97–101. One major limitation 
of these ACE2-based nanodecoys is the requirement for repeated 
clinical administration owing to their short half-lives. In addition, 
in many studies, the antiviral efficacy of nanodecoys has been evalu-
ated by co-administering them with SARS-CoV-2, or by adminis-
tering the nanodecoys immediately before virus exposure. However, 
this is not the scenario in real clinical use, because it is impossible 
to predict when an individual will become infected. In contrast, 
one study showed that the administration of LSC nanodecoys85 1 
or 2 days after virus exposure can still efficiently sequester the virus 
and mitigate lung injury, demonstrating its robust potential as a 
post-infection therapeutic in the clinic. All SARS-CoV-2 variants 
infect host cells in the same way as the original SARS-CoV-2 strain, 
by binding the ACE2 receptors (Fig. 3c). Both the above-mentioned 
strategies (engineered neutralizing antibodies and ACE2-based 
nanodecoys) have demonstrated efficacy in inhibiting the infection 
of SARS-CoV-2 variants by strongly binding to their S proteins, 
making them attractive strategies for combating SARS-CoV-2 vari-
ants (Fig. 3d).

that matches the geometry of the S protein may have an extremely 
high binding affinity to the S protein. To explore this possibility, 
nanobody trimers were prepared by conjugating three nanobod-
ies to immunoneutral collagen XVIII using proper immunoneutral 
linkers (Fig. 3a)77. As expected, the nanobody trimer developed 
with Re6B06 was 10,000 times more potent than the monomeric 
nanobody in neutralizing SARS-CoV-2. Meanwhile, the nanobody 
trimer prepared with Re9F06 was able to neutralize the Beta variant 
at a concentration as low as 5.8 pM. In addition to the nanobody 
strategy, another solution to address the limited efficiency of con-
ventional antibodies (IgGs) against the variants is to develop potent 
immunoglobulin M (IgM) neutralizing antibodies. A rationally 
designed IgM pentamer (IgM-14), a protein conjugate consisting 
of five immunoglobulin dimers (ten binding sites), assembled in 
the presence of a joining chain (J chain), potently neutralized three 
VOCs: Alpha, Gamma and Beta (Fig. 3a)78. In mice, single-dose 
intranasal administration of IgM pentamers protected against 
Gamma and Beta variants, while IgG-14, an IgG1 monoclonal anti-
body (CoV2-14), failed.

Targeting the S protein of variants with ACE2-based nanode-
coys. One extensively investigated nano-based strategy to com-
bat SARS-CoV-2 and its variants is the preparation of ACE2 
receptor-modified decoy NPs. Despite their continuing evolution, 
all SARS-CoV-2 variants enter cells through the interactions of their 
S protein with the ACE2 receptor expressed on cells. Therefore, 
strong interactions between the ACE2 receptors of decoy NPs and 
the S proteins of the SARS-CoV-2 variants can ensure that the 
sequestration of viruses by the ACE2-based nanodecoys is imper-
vious to virus mutations. An ACE2 microbody consisting of two 
ACE2 fused to an IgG Fc domain inhibited the entry of SARS-CoV-2 
pseudotyped virus in vitro and protected K18-hACE2 transgenic 
mice from SARS-CoV-2 infection-induced weight loss after intra-
nasal co-administration of microbodies and the SARS-CoV-2 virus 
(Fig. 3b)79. In addition to engineered ACE2-based nanodecoys, 
circulating ACE2-expressing extracellular vesicles (EVs) isolated 
directly from the plasma of patients with COVID-19 also potently 
inhibited the infection of SARS-CoV-2 variants in vitro (Fig. 3b)80. 
In a well-established human ACE2 (hACE2) transgenic COVID-19 
mouse model, intranasal co-administration of EV nanodecoys and 
SARS-CoV-2 improved the survival rates of infected mice when 
monitored on day 6. The robust antiviral efficacy of EV nanodecoys 
could be ascribed to two mechanisms: first, proteins presented on 
the surface of EVs might further hinder the access of SARS-CoV-2 
to the host cell surface, and second, synergistic binding of more 
than one ACE2 of the EV to the SARS-CoV-2 S protein could pro-
mote the binding affinity of EV nanodecoys to viruses.

Another widely used method for the preparation of ACE2-based 
nanodecoys is the construction of membrane NPs derived from 
ACE2-rich cells. For instance, 293T membrane-based ACE2 
nanodecoys showed excellent sequestration ability against both 
SARS-CoV-2 and D614G variant pseudotyped viruses (Fig. 3b)81. 
Importantly, in a hACE2-expressing mouse model, the inhalation 
of a formulation containing 293T nanodecoys and hyaluronic acids 
4 h and 8 h before virus exposure effectively inhibited the infection 
of the SARS-CoV-2 pseudotyped virus. One major advantage of this 
inhalable formulation, consisting of 293T nanodecoys and muco-
adhesive excipient hyaluronic acid, is the notably enhanced reten-
tion time of 293T nanodecoys in the lung, the main target organ of 
SARS-CoV-2. A similar 293T nanodecoy has also been described as 
blocking the infection of SARS-CoV-2 and its variants82.

As mentioned above, ACE2 is the viral receptor of human cells 
regardless of the mutations of the virus. Thus, the ACE2 nanodecoys 
that have shown efficacy against SARS-CoV-283,84 are considered to 
have similar efficacy against SARS-CoV-2 variants. To construct a cell 
membrane-based ACE2 nanodecoy, a high ACE2-expressing human 
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non-overlapping epitopes is a promising means to induce broad 
cross-protection against current and future variants (Fig. 4d)112,114 
due to complementary neutralization and reduced risk of muta-
tional escape. In particular, nanotechnology can play an active role 
in the non-covalent assembly or chemical conjugation of mAbs115,116. 
For example, as an alternative to displaying multivalent antigens, 
self-assembling ferritin can be modified to display antibody frag-
ments with a high degree of valency for broader neutralization and 
stronger affinity.

Nanotechnology-based therapeutic drugs for variants. Anti- 
inflammatory drugs and broad-spectrum antivirals (for example, 
nucleoside analogues and protease inhibitors) remain promising 
treatment options against variants in terms of reducing morbid-
ity and mortality, as exemplified by dexamethasone, remdesivir 
and Paxlovid (nirmatrelvir and ritonavir), currently used to treat 
patients with COVID-19117–119. The repurposing of drugs that are 
licensed or in clinical trials for other viruses provides a cost- and 
time-effective therapeutic solution120,121. However, high-dose, 
repeated administration of small-molecule drugs is necessary to 
maintain clinically effective concentrations, which can cause severe 
adverse effects118. NPs are promising drug delivery vehicles for these 
therapeutic drugs, and formulated nanomedicines are expected to 
achieve passive/active targeting, prolong circulation time and reduce 
side effects122–124. For example, some NPs preferentially accumulate 
in macrophages, providing the possibility of targeting dexametha-
sone to these hyperactivated immune cells to suppress the aber-
rant inflammatory responses related to COVID-19125. Apart from 
small-molecule therapeutic drugs, NP-enabled nucleic acid drugs 
that can precisely interfere with either pro-inflammatory signal-
ling or viral replication represent another powerful tool to combat 
COVID-19126. Notably, effectiveness against SARS-CoV-2 and its 
variants can be further improved by integrating multiple treatment 
modalities into one nanosystem. For instance, the aforementioned 
virucidal nanomaterials could be loaded with broad-spectrum anti-
viral drugs to achieve a synergistic effect103.

Outlook
While the original SARS-CoV-2 initiated the current pandemic, the 
emerging SARS-CoV-2 variants generated by the continuing muta-
tions of the S protein of SARS-CoV-2 have exacerbated and prolonged 
it. Despite its enhanced viral transmission and immune evasion, the 
currently dominant Omicron variant has resulted in lower rates 
of hospitalization and death compared with previous COVID-19 
waves28,127,128. However, conclusions regarding severity should be 
assessed carefully, because the global population has already expe-
rienced several COVID-19 waves and many countries have high 
vaccination rates, especially among vulnerable elderly populations. 
Further complicating matters, in some countries it is difficult to ascer-
tain what percentage of the population has already been infected129. 
Currently, it seems that a boost of the original mRNA vaccines can 
enhance neutralizing antibodies and might prevent Omicron infec-
tion shortly after administration46,47. Specifically, individuals recover-
ing from infection or having had a recent mRNA vaccine dose had 
a substantial gain in neutralizing activity29,130. However, some claim 
that variant-specific vaccines are warranted. To this end, both current 
mRNA vaccine manufacturers (Moderna131 and Pfizer–BioNTech132) 
and Johnson & Johnson133 have announced plans to develop new 
Omicron variant-specific vaccines. Accordingly, the Food and Drug 
Administration has stated that it is setting rules for the accelerated 
review of updated vaccines against specific variants12.

Targeting the mutated S protein of the SARS-CoV-2 variants 
with novel nanotechnology-based strategies holds great promise for 
combating SARS-CoV-2 variants. Eliciting neutralizing antibodies 
using vaccines is the most effective method to target the S protein 
of the variants, inhibiting viral infection. Various technologies have 

Potential nanotechnology strategies against SARS-CoV-2 
variants
Nanotechnology-based non-specific physical inactivation of vari-
ants. Antiviral nanomaterials with intrinsic virucidal abilities are 
highly valuable in combating the ongoing COVID-19 pandemic and 
future ones. Like most respiratory viruses, SARS-CoV-2 is covered 
by a phospholipid bilayer membrane, which is vital for its structural 
integrity and cellular entry. Virucidal nanomaterials, such as poly-
mer surfactants and pore-forming peptides, can directly disrupt the 
membrane and thus kill the virus102–104. For example, NanoViricides 
is developing a topical nanoviricide using ligand-decorated 
polymeric micelles, which can bind to viral glycoproteins and 
then disrupt its lipid envelope. Alternatively, Starpharma’s 
Viraleze, an antiviral nasal spray containing a negatively charged 
naphthalenedisulfonate-modified poly(L-lisine)-based SPL7013 
dendrimer, can establish a physical barrier to trap and inactivate 
viruses. In principle, SPL7013 acts as a heparan sulfate mimetic that 
strongly binds to the heparan sulfate proteoglycan binding motifs 
on the S protein, thereby blocking the virus–host interaction. In a 
preclinical study, Viraleze was shown to inactivate more than 99.9% 
of SARS-CoV-2 when used before or after exposure105. As these 
nanomaterials act by physically damaging or dampening the virus, 
they are effective against a very broad spectrum of viruses, includ-
ing SARS-CoV-2 and its variants.

Nanotechnology-based spatial capture of variants. As mentioned 
above, ACE2-based nanodecoys have been proven to effectively bind 
and immobilize SARS-CoV-2. As nanoarchitecture with a topog-
raphy matching the virus can induce multivalent interactions and 
maximize binding106, the combination of geometry-matching topog-
raphy and ACE2-enriched membrane coating could be a promis-
ing strategy to design next-generation nanodecoys against variants 
(Fig. 4a). As an alternative to decoys, virus-specific binders such as 
DNA aptamers and antibodies can be modified to yield custom-
ized nanoarchitectures with virus-matching geometries to achieve 
multivalent interactions (Fig. 4b,c)107,108. Exploiting the precise con-
struction of geometrically defined three-dimensional objects by 
DNA origami technology109, DNA-based nanostructures have been 
designed to trap viruses. For example, by mimicking the symmetri-
cal structure found in viral capsids, a self-assembling icosahedral 
DNA shell with its interior functionalized with virus-specific bind-
ers has been built to entrap the entire virus and prevent infection108. 
Although this nanoshell has been demonstrated to trap other infec-
tious viruses, it can be swiftly customized to combat SARS-CoV-2 
and its variants by simply switching the virus binders103. However, 
a structural mismatch between the icosahedral geometry and the 
enveloped virus could reduce multivalent interactions. To address 
this issue, a nanobody trimer binder that matches the geometry of 
the S protein could be used to increase the binding affinity of the 
DNA nanoshell to SARS-CoV-2 variants (Fig. 3a).

Nanotechnology-based immune neutralization of the variants. 
SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can 
provide effective therapeutic protection in patients with COVID-
19, but several authorized mAbs have recently been found to have 
reduced neutralizing potency towards the circulating variants, espe-
cially the Omicron variant110. Nanotechnology-based cryoelectron 
microscopy is a crucial tool for understanding the neutralizing 
mechanisms and binding epitopes of mAbs, which is helpful to dis-
cover broad-spectrum mAbs targeting highly conserved epitopes of 
SARS-CoV-2 and ultrapotent mAbs neutralizing the SARS-CoV-2 
variants111,112. To prevent viral escape and increase coverage against 
the variants, cocktails of two or more mAbs targeting multiple sites 
of vulnerability on the S glycoprotein are highly preferred over a 
single antibody113. Therefore, rational assembly of those mAbs as 
multispecific antibodies that simultaneously target two or more 
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been employed to develop a large variety of vaccines, and several of 
them demonstrating high protective efficacy have been deployed 
worldwide. However, when faced with the emerging SARS-CoV-2 
variants, the protective efficacy of these vaccines has decreased. 
Compared with conventional vaccines, nanotechnology-based 
vaccines are still able to protect individuals from the SARS-CoV-2 
variants due to their original high efficacy; in addition, they can be 
conveniently and rapidly updated to improve their efficacy against 
the SARS-CoV-2 variants. We anticipate that their extremely 
high efficacy and short manufacturing cycle time will prove cru-
cial in the implementation of next-generation vaccines against 
SARS-CoV-2 variants.

Engineered neutralizing antibodies provide another method to 
target the S protein of variants, especially when vaccine-elicited 
neutralizing antibodies are insufficient because of a compromised 
immune response. While a large number of engineered mono-
meric neutralizing antibodies that neutralize SARS-CoV-2 fail to 
neutralize the emerging SARS-CoV-2 variants, multivalent dis-
play of these antibodies on a nanoplatform can dramatically pro-
mote their neutralizing activity. Future efforts could focus on the 
development of multivalent antibody nanoplatforms that are able 
to bind to different sites of the S protein simultaneously, aiming to 
effectively target different variants without the need to adjust the 
platforms. The development of ACE2-based nanodecoys is consid-
ered an ideal strategy to target the S protein of the variants, due 
to the fact that all the variants have high binding affinity to the 
ACE2 receptors regardless of their continuing mutations. Thus, an 
effective ACE2-based nanodecoy for SARS-CoV-2 should also be 
effective for current and future SARS-CoV-2 variants, holding great 
potential to become a universal platform for all variants. Notably, 
although the latest Omicron variant harbours several times more 
mutations than other circulating variants, it still infects host cells 
through ACE2 receptors. Potentially, a variety of nanostructures 
(for example, DNA origami) that directly capture variants or pre-
cisely display neutralizing antibodies or ACE2 receptors on their 
surfaces can be adapted to prepare novel nanotechnology-based 
therapeutics to combat SARS-CoV-2 variants. Despite the ongoing 
nature of the COVID-19 pandemic, owing to the rapid spread of 
SARS-CoV-2 variants globally, we expect the advances and innova-
tion offered by nanotechnology can provide diverse approaches to 
hasten the end of the pandemic.
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