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Transport by circulating myeloid cells 
drives liposomal accumulation in inflamed 
synovium
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The therapeutic potential of liposomes to deliver drugs into inflamed tissue 
is well documented. Liposomes are believed to largely transport drugs 
into inflamed joints by selective extravasation through endothelial gaps at 
the inflammatory sites, known as the enhanced permeation and retention 
effect. However, the potential of blood-circulating myeloid cells for the 
uptake and delivery of liposomes has been largely overlooked. Here we 
show that myeloid cells can transport liposomes to inflammatory sites in a 
collagen-induced arthritis model. It is shown that the selective depletion 
of the circulating myeloid cells reduces the accumulation of liposomes up 
to 50–60%, suggesting that myeloid-cell-mediated transport accounts for 
more than half of liposomal accumulation in inflamed regions. Although it 
is widely believed that PEGylation inhibits premature liposome clearance 
by the mononuclear phagocytic system, our data show that the long 
blood circulation times of PEGylated liposomes rather favours uptake by 
myeloid cells. This challenges the prevailing theory that synovial liposomal 
accumulation is primarily due to the enhanced permeation and retention 
effect and highlights the potential for other pathways of delivery in 
inflammatory diseases.

Liposomes have been studied as drug carriers for over half a century1,2 
to improve the stability, bioavailability, pharmacokinetics and safety 
of a wide variety of drugs with various physicochemical properties1,2. 
Incorporating polyethylene glycol (PEG)-conjugated lipids in liposomal 

formulations is considered to be the gold standard to reduce liposomal 
clearance by the mononuclear phagocytic system3,4, consequently 
prolonging the circulation time of liposomes2,3. This improves the 
accumulation of PEGylated liposomes at inflammatory sites like the 
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(Fig. 1f) and zeta potential (Fig. 1g). It is known that liposome size may 
change on intravenous injection due to the adsorption of serum pro-
teins1,3,22, which can result in aggregation. Therefore, we measured the 
liposome size after dispersing in foetal bovine serum (Supplementary 
Fig. 3). Although the size of the non-PEGylated liposomes increased 
by about 100 nm, the size of the PEGylated liposomes did not change. 
This indeed confirms that PEGylation improves the colloidal stability 
of the liposomes in serum23.

Liposomes containing the near-infrared dye DiR were prepared 
to evaluate liposomal biodistribution (Fig. 1h–l) up to 24 h after intra-
venous administration24,25 in healthy (Fig. 1i,j) and CIA mice (Fig. 1k,l). 
The fluorescence intensity of the throat region (Fig. 1i–l, blue circles) 
was used to estimate the blood circulation time of the liposomes, 
given its high blood perfusion and the fact that it is an unpigmented 
and almost furless region. The fluorescence intensity of the throat 
shows that the non-PEGylated liposomes have a circulation time of less 
than 4 h, whereas the PEGylated liposomes circulate longer than 24 h  
(Supplementary Fig. 4 and Fig. 1i–l). Although the blood circulation 
times of liposomes were similar in control and CIA mice, liposomal 
accumulation was only detected in the inflamed ankles and paws of 
CIA mice (Fig. 1k–l). This accumulation was much more prominent 
for the PEGylated liposomes and correlated well with the CIA score of 
the limbs (Fig. 1m).

Passive liposome accumulation in inflamed regions has been 
predominantly attributed to the EPR effect. Early reports demon-
strated that liposome uptake by synovial macrophages occurred8,26. 
This was later termed ‘ELVIS’, that is, extravasation through leaky 
vasculature and subsequent inflammatory cell-mediated sequestra-
tion, and proposed to be a direct result of the EPR effect5. Although 
ELVIS acknowledges liposome uptake by immune cells at inflamma-
tion sites, it overlooks that the majority of macrophages are derived 
from circulating monocytes, which massively infiltrate the inflamed 
synovium from the blood (Fig. 1d)27,28. Therefore, we aimed to inves-
tigate whether myeloid cells already take up liposomes in the blood 
before their chemotactic recruitment to inflammatory sites and as 
such contribute to liposome accumulation in the synovium. Therefore, 
we quantified liposome uptake in different immune cells in the blood 
and ankle synovium.

Flow cytometry analysis with an exploratory panel (Fig. 1b and  
Supplementary Figs. 1 and 2) suggests liposomal engulfment by mye-
loid cells in the blood and ankle synovium (Supplementary Fig. 5a,b). In 
the latter (Fig. 2a), significantly more myeloid cells engulfed PEGylated 
liposomes compared with non-PEGylated liposomes and this per-
centage further increased over time, correlating with the progressive 
accumulation of PEGylated liposomes in the inflamed synovia (Fig. 1m).  
As shown in Fig. 2b, this also resembled the liposomal uptake profiles 
in the blood, which implies that liposome uptake by myeloid cells 
already occurred to a large extent in circulation and suggests that 
circulatory myeloid cells engulf liposomes in the blood and transport 
them towards the synovium. Similar observations were also observed 
in the inflamed knee synovium (Supplementary Fig. 6)29. To confirm 
this hypothesis, we visualized the uptake experiment of PEGylated 

synovium5–8, often explained by the enhanced permeation and reten-
tion (EPR) effect1,3. This originates from Matsumura and Maeda’s 
observation in the 1980s that intravenously injected macromolecules  
can passively extravasate into diseased sites due to the presence of 
poorly aligned endothelial cells9 and is still largely accepted as the  
predominant reason for liposomal accumulation in tumours and 
inflamed lesions5,7,10.

In contrast, it remains largely unexplored how and to what extent 
liposomes interact with circulatory myeloid cells, which is especially 
important when inflammatory diseases are targeted11–13. In rheuma-
toid arthritis (RA), it is known that circulating myeloid cells, such 
as monocytes and neutrophils, infiltrate the inflamed tissue and 
play a key role in the inflammatory process12–15. Myeloid cell infiltra-
tion has been exploited by several groups to develop monocyte or 
neutrophil-targeted nanoparticles, including liposomes, as a strat-
egy to treat inflammatory diseases16–19. However, in-depth studies 
that clarify to what extent the myeloid cell transport of non-targeted 
liposomes contributes to their accumulation into inflamed tissues are 
currently lacking20.

This study reveals that the prolonged blood circulation 
of PEGylated liposomes results in sustained engulfment by 
blood-circulating myeloid cells, which drives their subsequent accu-
mulation into arthritic joints. We quantified that myeloid-cell-mediated 
transport is responsible for over 50% of liposome delivery in  
arthritic joints.

Circulatory myeloid cells massively engulf 
PEGylated liposomes
To investigate the impact of PEGylation on the ability of liposomes to accu-
mulate in inflamed joints, the chronic inflammatory collagen-induced 
arthritis (CIA) mouse model was used (Fig. 1a). Starting from day 21, the 
mice were examined three times a week and the inflammation rate was 
visually scored on a scale from 0 (no signs) to 4 (severe inflammation 
with deformations). On inflammation, sustained myelopoiesis results 
in a chemotaxis-driven transport of myeloid cells from the bone marrow 
to the inflammatory joints12,13. We validated CIA induction by analysing 
blood and ankle synovium from healthy and CIA DBA/1 mice with flow 
cytometry. Figure 1b provides an overview of cell surface markers used to 
quantify (1) circulating monocytes that convert into monocyte-derived 
infiltrating macrophages (MoMFs) in the synovium, (2) neutrophils,  
(3) dendritic cells, (4) B-cells and (5) CCR2+ myeloid cells. Supplementary 
Figs. 1 and 2 show the detailed gating strategy. A much higher mono-
cyte, neutrophil and B-cell fraction was found in the blood of CIA mice 
compared with healthy mice (Fig. 1c). Moreover, we observed a clear 
invasion of different myeloid cell populations (MoMFs, neutrophils, 
CCR2+ cells and dendritic cells) in the inflamed synovia (Fig. 1d). The 
increase in myeloid cells was less prominent in the blood (Fig. 1c) and 
can be explained by the limited circulation time of myeloid cells in the 
blood before synovial accumulation, as well as the prolonged half-life 
of MoMFs and neutrophils in the synovium12,21.

As Fig. 1e illustrates, non-PEGylated and PEGylated liposomes 
(5 mol% DSPE-PEG) liposomes were prepared with comparable size 

Fig. 1 | Characterization of the CIA model, the two different liposomes used 
in this study and their respective biodistribution over 24 h. a, CIA is induced 
by immunizing the mice with a collagen cocktail including complete Freund’s 
adjuvant, which is followed by a boost immunization at day 21. Starting from that 
time point, the inflammation of the paws is visually scored on a scale from 0 to 4. 
In this study, only mice with at least one ankle joint with score 3 were included. 
b, Overview of cell surface markers used in our exploratory study. c,d, Absolute 
number of immune cell fractions in the blood (c) and ankle synovium (d) of 
healthy (grey) (N = 4) and CIA DBA/1 mice (N = 6) (blue). Data are represented as 
mean ± standard deviation (s.d.). Two-sided multiple t-test analysis performed 
with correction for multiple tests (Sidak). Significance levels are indicated with 
asterisks: *, ** and *** represent the adjusted p values of p < 0.05, p < 0.01 and 

p < 0.001, respectively. e, Schematic of PEGylated and non-PEGylated liposomes. 
f,g, Size distribution and polydispersity index (PDI) (f) and zeta potential (g) 
of DSPC:Chol (40:60 mol%) (N = 6) and DSPC:Chol:PEG (38:57:5 mol%) (N = 9) 
liposomes dispersed in HEPES buffer; data are represented as mean ± standard 
error of the mean (s.e.m.). h, Representative image of a control DBA/1 mouse, that 
is, no liposomes were injected. i–l, Representative images of the biodistribution 
of DiR liposomes in healthy and CIA DBA/1 mice at 4 h (i and k) and 24 h (j and l) 
after intravenous injection. The blue circle indicates the neck–throat area; the 
fluorescence signal in this region allowed to estimate the blood-residence time 
of the liposomes. m, Correlation between the DiR fluorescence signal in the 
inflamed ankles and the CIA score of the ankles (N = 2). Data are represented as 
mean ± s.e.m.
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liposomes via the Amnis ImageStream imaging flow cytometer  
(Fig. 2c). CD45+CD11b+ cells from blood and ankle synovium  
(Supplementary Fig. 7 shows the gating strategy) were sorted and 
ImageStream was used to visualize the liposomal uptake in monocytes 

and neutrophils (Supplementary Fig. 8 shows the gating strategy).  
The internalization wizard of ImageStream demonstrated lipo-
somal engulfment in both cell types (Fig. 2d), thereby confirming 
our hypothesis. Importantly, both ImageStream images (Fig. 2c 
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and Supplementary Figs. 9 and 10) and flow cytometry histograms  
(Fig. 2a,b) indicated a much higher liposome engulfment by monocytes 
than neutrophils.

To allow further phenotyping of the liposome-positive myeloid 
cells in blood and synovium, we repeated the exploratory uptake exper-
iments (Fig. 2a–d) with a more advanced and extensive flow cytometry 
panel (Fig. 2e) and after the injection of PEGylated liposomes (Fig. 2f–i). 
This allowed the discrimination of neutrophils (CD45+CD11b+Ly6C+Ly
6Ghi), inflammatory monocytes (CD45+CD11b+Ly6C+CCR2+CX3CR1+F
4/80Lo), monocyte-derived macrophages (CD45+CD11b+Ly6C+CCR2+ 
CX3CR1+F4/80hi) and synovium-resident macrophages (F4/80hiLy6C
−CCR2−CX3CR1−) (refs. 30,31) (Supplementary Fig. 11 shows the gating 
strategy). The first observation was that liposome engulfment in the syn-
ovium was solely restricted to immune cells (CD45+), particularly mye-
loid cells, whereas mesenchymal synovial fibroblasts (included in the 
CD45− population) did not take up liposomes (Supplementary Fig. 12a).  
Importantly, we could visualize the upregulation of macrophage 
marker F4/80 on synovium-infiltrating monocytes, confirming that 
the F4/80lo monocytes in circulation are indeed the precursors of 
F4/80hi MoMFs in the synovium (Fig. 2f). This also explains why these 
cells have comparable uptake profiles in blood and ankle synovium 
(Fig. 2g). Only 2.7% of the macrophages within the synovial fluid were 
identified as synovial resident macrophages (F4/80hiLy6C−CCR2−C
X3CR1−) (Supplementary Fig. 12b), and therefore, their contribution  
to liposome engulfment is negligible compared with the MoMFs  
(Supplementary Fig. 12b) in the CIA model. Figure 2g illustrates that all 
monocytes (blood and synovium) and MoMFs (synovium) engulfed the 
liposomes, whereas neutrophils do to a lesser extent (Fig. 2g), which 
corresponds well with the ImageStream data (Fig. 2c).

We also determined the relative contribution of monocytes and 
neutrophils to this liposomal transport by quantifying (1) the amount of 
monocytes, MoMF and neutrophils in liposome-positive cell fractions 
in the blood and ankle synovium (Fig. 2h) and (2) their liposomal uptake 
based on the mean fluorescence intensity (MFI) representing the num-
ber of liposomes engulfed (Fig. 2i). This illustrates that neutrophils are 
the largest fraction (78%) of liposome-positive CD45+ cells in the blood, 
whereas monocytes account for less than 10%. This can be explained 
by the amount of circulating neutrophils versus monocytes in circula-
tion (Fig. 1c). Interestingly, based on the MFI values, we observed that 
circulatory monocytes engulfed on average 5.6 times more liposomes 
compared with the neutrophils (Fig. 2i), which again corresponds to 
the ImageStream data (Fig. 2c). In contrast to blood, monocytes and 
MoMFs contributed to a much higher extent to liposome-positive  
myeloid cells in the synovium (Fig. 2h) as well as showed a higher 
liposome engulfment efficiency compared with neutrophils (Fig. 2i). 
Despite the higher fraction of neutrophils in circulation, these data 
(Fig. 2h,i), therefore, suggest that monocytes are mainly responsible for 
the cell-mediated liposome transport to the inflamed synovium due to 
their much higher phagocytic capacity. It is important to note that the 
maturation of monocytes into MoMFs in the synovium is accompanied 

by a clear increase in MFI. This shows that the synovium-infiltrated 
monocytes continue to engulf liposomes at the synovium and suggests 
that ELVIS also partially contributes to the observed accumulation of 
liposomes in myeloid cells in the inflamed synovia.

Adoptive cell transfer confirms myeloid cell 
transport
To further confirm that myeloid cells transport liposomes to the 
inflamed synovium, we performed an in situ adoptive cell transfer 
experiment using genetically altered (CD45.1, donor) and wild-type 
(CD45.2, recipient) C57BL/6 mice (Fig. 3a). It is known that a milder form 
of arthritis is induced in Th1-dominant CIA C57BL/6 mice32 compared 
with Th2-dominant CIA DBA/1 mice; therefore, immune profiling and 
liposomal uptake experiments (Figs. 1 and 2a,b) were repeated to con-
firm that myeloid cell uptake was not impacted by the immunological 
background of the mice (Supplementary Figs. 13–17). Although a lower 
percentage of neutrophils was detected in the blood and synovium 
of the C57BL/6 mice, this did not impact the liposome uptake profile 
(Supplementary Figs. 15–17), but could explain why C57BL/6 mice 
are more resistant to the onset of inflammation32,33 as neutrophils are  
indispensable for CIA initiation34.

PEGylated liposomes were intravenously injected in CIA CD45.1 
mice; 24 h later, peripheral blood leucocytes of CD45.1 mice were har-
vested and pooled before re-infusion in a CIA CD45.2 mouse (Fig. 3a).  
Importantly, the harvested leucocytes were centrifuged to remove 
free liposomes to guarantee that liposome delivery into the synovia 
was only cell mediated and no further uptake of free liposomes by 
CD45.1 cells was possible after transfusion. Figure 3b–d summarizes 
the outcome of two independent experiments. In the first experi-
ment, 7.6 × 106 CD45.1 leucocytes were pooled for injection in one 
CD45.2 mouse, whereas in the second experiment, 12.6 × 106 CD45.1 
leucocytes were pooled. Flow cytometry analysis confirmed the high 
viability (>99%) of the peripheral blood leucocytes before transfusion  
(Fig. 3b). Four hours after transfusion, the percentage of CD45.1 
immune cells in blood and ankle synovium of the recipient CD45.2 
mice was quantified with flow cytometry (Fig. 3c and Supplementary 
Figs. 18 and 19). A population of CD45.1 cells was found in the blood and 
in the inflamed synovia (Fig. 3c), which confirms myeloid cell infiltra-
tion into the inflamed tissue. The number of transfused cells found 
in the inflamed synovium was very low (<1% of the total number of 
synovial cells) in the first experiment, though expected given the high 
number of endogenous immune cells in the transfused mouse and the 
relatively low amount of CD45.1 leucocytes that were transfused. The 
experiment was, therefore, repeated with a higher number of trans-
fused cells (12.5 × 106 CD45.1 leucocytes per CD45.2 mouse) to confirm 
the myeloid infiltration with a higher statistical significance (Fig. 3c). 
Figure 3d shows the flow cytometry histograms of the myeloid CD45.1 
cells in the ankle synovium and reveals that the majority of MoMFs and 
CCR2+ CD45.1 cells in the synovium contained liposomes, whereas 
only 27.2% of the infiltrated CD45.1 neutrophils contained liposomes. 

Fig. 2 | Liposome engulfment by myeloid cells in CIA DBA/1 mice.  
a,b, Liposome uptake in myeloid cells in the ankle synovium (a) and blood (b) 
as measured with the exploratory flow cytometry panel (Fig. 1b). The graphs 
show the percentage of liposome-positive cells for each myeloid cell type 
for non-PEGylated and PEGylated liposomes at 4 and 24 h after injection, 
respectively. Data are represented as mean ± s.e.m., sample size (N = 4) per 
condition, two-sided one-way analysis of variance analysis and adjusted p values 
with correction for multiple tests (Tukey’s). The representative flow cytometry 
histograms are shown below each graph. c, Confirmation of liposome uptake 
(red; DiD liposome staining) by ImageStream flow cytometry. The images of 
monocytes and neutrophils (green; CD11b staining) in blood and ankle synovium, 
respectively, are shown. d, Degree of internalization can be defined using the 
internalization wizard of ImageStream software. The cell image that was masked 
is the CD45+CD11b+ population and liposome internalization (R2) was defined 

using DiD as the probe for the liposomes. e, Overview of the extended flow 
cytometry panel in which additional myeloid cell markers were included to better 
phenotype the liposome-positive myeloid cell and macrophage population.  
f, Illustration of macrophage maturation (upregulation of F4/80) on synovium-
infiltrated monocytes (CD45+CD11b+Ly6C+CX3CR1+CCR2+). g, Confirmation  
of PEGylated liposome uptake in monocytes, MoMFs and neutrophils in the  
ankle synovium and blood, characterized using a more extensive panel in a 
repetition experiment. Data in g–i are represented as mean ± s.d.; sample size 
(N = 3) per condition. h, Respective contribution (%) of different myeloid cells 
within total liposome-positive CD45+ cells in the blood and ankle synovium.  
I, MFI, representing the liposome uptake, in the myeloid cells in blood and ankle 
synovium. Two-sided unpaired t-test analysis was performed. Significance levels 
are indicated with asterisks: *, ** and *** represent the p values of p < 0.05, p < 0.01 
and p < 0.001, respectively.
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The adoptive cell transfer experiment, thus, confirmed our earlier 
observations (Fig. 2) that liposome transport by myeloid cells from 
the circulation into inflamed synovia takes place and that monocytes 
as well as neutrophils are involved.

Selective cell depletion confirms myeloid cell 
transport
To quantify the contribution of myeloid-cell-mediated transport 
of PEGylated liposomes into inflamed synovia, we made use of 
myeloid-cell-depleted CIA mice by using anti-GR-1 and anti-CCR2 
monoclonal antibodies (Fig. 4a). This experiment was performed twice 
in two independent experiments (Fig. 4c–g). Antibody treatment effi-
ciently depleted circulating and synovium-infiltrating myeloid cells 
(Supplementary Fig. 21b) without affecting the CIA scores over the 
following 48 h (Fig. 4e). PEGylated liposomes were injected 24 h after 
the first antibody injection followed by the quantification of synovial 
liposome accumulation with IVIS imaging (Fig. 4b–g). We observed 
that liposome accumulation in inflamed front paws and ankles (score 3)  
of depleted mice was reduced by over 50% compared with control 
mice (Fig. 4c–g). Flow cytometry analysis confirmed that the uptake 
of PEGylated liposomes in CD45+ cells in the ankle synovium was 

decreased by 60% (Fig. 4h). These results imply that the transport of 
PEGylated liposomes by myeloid cells is responsible for over 50% of 
liposome accumulation in inflamed synovia. Importantly, we observed 
that (1) on depletion of the myeloid fraction, liposome uptake remains 
restricted to the immune cell population (Supplementary Fig. 21a) and 
(2) part of the residual accumulation of the liposomes in the synovium 
of antibody-depleted mice may be explained by the remaining fraction 
of myeloid CD45+CD11b+CX3CR1+ cells that are triple negative for Ly6C, 
Ly6G and CCR2. This particular myeloid fraction also contributes to 
liposome accumulation in non-depleted conditions and transport 
does not seem to increase on depletion of the other myeloid fractions 
(Supplementary Fig. 21c).

Lipid nanoparticles containing mRNA show gene 
expression in inflamed joints
Next, we explored whether mRNA-containing PEGylated lipid nano-
particles (mRNA LNPs) made with the clinically relevant ionizable lipid 
MC3 were also taken up by myeloid cells in CIA C57BL/6 mice (Fig. 5 
and Supplementary Fig. 21) as well as in CIA DBA/1 (Supplementary 
Fig. 22). The mRNA LNPs were prepared with firefly luciferase (fLuc) 
encoding N1-methylpseudouridine-modified mRNA and had a similar 
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size and surface charge (Fig. 5b) as the PEGylated liposomes we stud-
ied. As the LNPs contained a ‘diffusible’ PEG lipid (PEG-DMG), we only 
performed experiments 4 h after intravenous injection due to their 
shorter circulation time.

After injection, mRNA LNPs accumulated in the joints (Fig. 5c 
and Supplementary Fig. 21), similar to the findings with PEGylated 
liposomes (Fig. 2). Furthermore, we observed a high fLuc expression 

(Fig. 5c (right) and Supplementary Fig. 22a (right)) that corresponded 
well with the fluorescent signal (Fig. 5c (left) and Supplementary Fig. 22a  
(left)). The mRNA LNPs were also engulfed in myeloid cells, both in the 
blood and in the ankle synovium (Supplementary Fig. 22), and cellular 
uptake profiles in the ankle synovium (Fig. 5d and Supplementary Fig. 22b)  
were comparable with those of PEGylated liposomes. However, in 
blood, the percentage of myeloid cells that engulfed mRNA LNPs was 
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notably lower compared with PEGylated liposomes (Fig. 5e). This could 
be expected as 4 h after injection, most of PEG-DMG was already dis-
sociated from the LNPs35–37. It was estimated that the PEG-DMG half-life 
in LNPs was close to one hour only, which results in a much shorter 
circulation time of the ‘diffusible’ PEG-DMG-composed LNPs compared 
with PEGylated liposomes37.

Within our study, we observed that inflammatory myeloid cells 
(that is, monocytes and neutrophils) engulfed PEGylated liposomes 
in circulation after the administration of PEGylated liposomes in a 
clinically relevant dose, similar to, for example, the FDA/EMA-approved 
Doxil/Caelyx. Moreover, the presence of chemotactic markers CCR2 
and CX3CR1 on the surface of liposome-positive synovial macrophages 
confirmed their monocyte-derived myeloid origin13,38–40. With an autol-
ogous cell transfusion experiment, we showed that cytokine-driven 
myeloid-cell-mediated transport contributes to liposome accumu-
lation in inflamed joints and this accounts for over 50% of liposome 

accumulation in the inflamed joints based on the outcome after 
myeloid cell depletion. Although several studies have shown that 
ligand-modified nanoparticles actively engage in cellular transport by 
Ly6C-positive cells, macrophages, monocytes and neutrophils17–19,41,42, 
our data suggest that cellular transport is also an important mecha-
nism at play for unmodified nanoparticles. This study illustrates that 
monocytes—the circulating precursors of the majority of synovial 
macrophages in CIA—are especially efficient in liposome transport and 
this was more pronounced for long-circulating PEGylated liposomes. 
Our work, therefore, indicates that nanocarrier PEGylation does not 
completely abrogate immune cell uptake but, on the contrary, favours 
a sustained uptake in myeloid cells due to their long circulation time. 
In contrast, the much shorter circulation time (<4 h) of non-PEGylated 
liposomes limits the time frame for uptake by circulating myeloid 
cells and impedes their transport into the synovium. This observa-
tion is important given the fact that PEGylation is considered the gold 
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standard to avoid uptake by highly phagocytic immune cells of the 
mononuclear phagocytic system, such as macrophages and dendritic 
cells3. Although PEGylation has shown to slow down opsonization and 
immune recognition, the interaction of PEGylated liposomes with 
myeloid cells remains, however, less understood5,43. It was recently 
observed that neutrophils favour the uptake of C3 and C5 opsonized 
nanoparticles44; further in-depth exploration of protein corona forma-
tion kinetics on PEGylated liposomes could probably provide hints on 
how this might relate to uptake by myeloid cells45–47. It could also explain 
why monocytes seem to phagocytose more PEGylated liposomes com-
pared with neutrophils, whereas both myeloid cell types are known to 
be highly phagocytic48. An alternative explanation can be found in the 
shorter circulation and survival time of neutrophils, which restricts the 
timeframe for phagocytosis.

We showed that MC3-based mRNA lipid nanoparticles are also 
taken up and transported to the inflamed synovium by circulat-
ing myeloid cells, inducing local mRNA expression. Therefore, our 
data correspond well to observations that the targeting of siRNA 
LNPs to myeloid cells could be improved by optimizing the LNP 
formulation49,50. Such optimized LNPs containing siRNA amelio-
rated inflammatory symptoms in rodents and non-human primates 
and provided the first indication that LNPs might be promising for 
anti-inflammatory treatments. Also, several recent reports showed 
that myeloid cells take up intramuscularly administered mRNA 
LNP COVID-19 vaccines and consequently release proinflammatory 
cytokines51,52. Importantly, it is worth highlighting that the presence 
of a PEG lipid on the nanocarrier seemed indispensable in inducing 
long-term uptake in circulating myeloid cells as we observed a drop 
in LNP uptake in circulating myeloid cells at 4 h post-intravenous 
injection that probably relates to the diffusible PEG37.

Although we explored myeloid-cell-mediated transport in an 
RA model, it is known that the recruitment of myeloid cells plays a 
key role in many other diseases, including COVID-19 (refs. 53–57) 
and cancer58–60. Recent studies have identified inflammatory mono-
cytes as important contributors to COVID-19-induced inflammatory 
responses and the subsequent cytokine storm53,54,56,61. Therefore, 
our findings support the idea proposed in another work to explore 
the use of PEGylated liposomes for delivering corticosteroids to 
macrophages in inflamed lungs61. Also, the passive accumulation 
of PEGylated liposomes in tumours has been extensively docu-
mented10,62–64. Following our findings, further research is warranted 
to investigate the contribution of myeloid-cell-mediated transport 
in this process.

Conclusions
In conclusion, we observed that myeloid-cell-mediated transport con-
tributes to the accumulation of PEGylated liposomes at inflammatory 
sites, which has previously been primarily attributed to the EPR effect. 
Our findings suggest that exploiting the interactions between nano-
materials and immune cells may reveal attractive opportunities for the 
nanomedicine-based treatment of inflammatory diseases.
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Methods
Liposomes
The liposomes were produced using 1,2-distearoyl-sn-glycero-3-p
hosphocholine (DSPC; Corden Pharma), cholesterol (Avanti Polar Lipids) 
and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(biotiny
l(polyethyleneglycol)-2000) (DSPE-PEG2000; Avanti Polar Lipids) in a 
40:60:0 and 38:57:5 molar ratio using the lipid-film hydration tech-
nique reported elsewhere65,66. HEPES buffer (20 mM, pH 7.4) was used 
for the rehydration of the film, leading to a final lipid concentration 
of 12.5 mM lipids and subsequently downsized using a tip sonicator 
(Branson Digital Sonifier 450). For fluorescently labelled liposomes, a 
fluorescent lipid dye (either DiR/DiI) (Molecular Probes, Thermo Fisher 
Scientific) was added to the lipid solution before making the lipid film; 
the molar ratio (mol. dyeDiR/DiI:mol. total lipid) equalled 1.20:98.80, 
whereas (mol. dyeDiD:mol. total lipid) for ImageStream analysis equalled 
0.25:99.75.

mRNA
Nucleoside-modified (N1mΨ) mRNA encoding fLuc and N1mΨ mRNA 
encoding ovalbumin were produced as described elsewhere67.

Production of mRNA LNPs
LNPs containing mRNA were prepared as previously described68,69. 
Briefly, lipid components (DLin-MC3-DMA, DSPC, cholesterol and 
PEG-DMG) were dissolved in ethanol at appropriate molar ratios 
(50.0:10.0:38.5:1.5) to a final concentration of 10 mM total lipid. Then, 
mRNA was dissolved in 25 mM sodium acetate buffer at pH 4.0 to obtain 
a ratio of 0.056 mg nucleic acid per µmol lipid (corresponding to an 
amine-to-phosphate ratio of 3). The organic and aqueous solutions 
were mixed through a T-junction mixer70,71 at a flow ratio of 1:3 (v:v) and 
a total flow rate of 28 ml min–1. The resting suspension was dialysed 
against a 1,000-fold volume of phosphate-buffered saline at pH 7.4 
overnight and concentrated using Vivaspin centrifugal concentra-
tors. The lipid concentrations were determined by measuring the 
cholesterol content of the LNPs (Cholesterol E Assay, Wako Chemicals). 
The Quant-iT RiboGreen RNA Assay was used to determine the mRNA 
encapsulation and concentration in LNPs according to the manufac-
turer’s protocols (Thermo Fisher).

Size and zeta potential of liposomes and LNPs
The intensity-based z-averaged size of the liposomes, the number-based 
size of the LNPs and zeta potential of all the formulations dispersed in 
the HEPES buffer (20 mM, pH 7.4) were characterized via dynamic light 
scattering using a Malvern ZetaSizer Nano ZS (Malvern Instruments).

Liposome aggregation assay in serum
A dispersion of fluorescently DiI liposomes with a total concentration of 
12.5 mM lipids was 1:5,000 diluted in full foetal bovine serum (Biowest) 
or HEPES buffer (20 mM, pH 7.4) (control) and kept at 37 °C. The aggre-
gation of liposomes up to 4 h was studied by fluorescent nanoparticle 
tracking using a NanoSight LM10 instrument (Malvern Instruments)22.

Mice
Male DBA/1 and C57BL/6 mice were purchased from Janvier. Transgenic 
CD45.1 C57BL/6 mice were bred in situ (LA1400410). All the animals 
were housed in a specific-pathogen-free facility following institutional 
guidelines. Animal experiments were conducted according to the regu-
lations of Belgian law and approved by the Local Ethical Committee on 
Animal Experiments (Ghent University, ECD 18/16). Mice were kept in 
controlled conditions (12 h/12 h light–dark cycle; temperature, 21–24 °C; 
relative humidity, 40–70%) and had access to food and water ad libitum.

CIA model
The CIA mouse model is frequently employed to investigate nano-
medicines for RA72 given its high similarities with human RA due to the 

activation of both innate and adaptive immune system33,72. The latter is 
lacking in other inflammatory models like the collagen-antibody-induced 
arthritis model and the lipopolysaccharide-induced acute inflammation 
model73. The CIA model was induced in male DBA/1 and C57BL/6 mice via 
intradermal injection at the base of the tail consisting of 200 µg of chicken 
type-II collagen (CII) (Morwell Diagnostics) dissolved in 0.1 M acetic 
acid, emulsified in incomplete Freund’s adjuvant with 150 µg (DBA/1) 
and 200 µg (C57BL/6) Mycobacterium tuberculosis H37RA (Difco). After 
21 days, a booster intradermal injection was given consisting of 200 µg 
CII in incomplete Freund’s adjuvant (DBA/1) or 200 µg CII emulsified in 
incomplete Freund’s adjuvant with 250 µg Mycobacterium tuberculosis 
H37RA (C57BL/6). DBA1 and C57BL/6 mice were monitored up to 42 and 
60 days post-immunization, respectively. From day 21, the mice were 
monitored thrice per week for clinical symptoms of CIA. The severity of 
inflammation was visually scored based on erythema and swelling, and 
graded as follows: 0, normal; 0.5, erythema and oedema in only one digit; 
1, erythema and mild oedema of the footpad, or ankle or two to five digits; 
2, erythema and moderate oedema of two joints (footpad and ankle; 
two to five digits); 3, erythema and severe oedema of the entire paw; 
4, reduced swelling and deformation leading to an incapacitated limb.

Intravenous injection of liposomes in mice
Healthy and CIA mice were anaesthetized via the inhalation of 3.5% 
isoflurane (IsoFlo, AST Farma) diluted with oxygen (0.5 l min–1). The 
mice were injected via a catheter (polyethylene tubing, Intramedic 
PE10, BD) placed in the tail vein. The catheter was filled with a sterile 
0.9% NaCl solution to ensure correct insertion in the tail vein. Once cor-
rectly placed, 200 µl of liposome dispersion was slowly injected. Before 
injection, the liposome dispersions were diluted in sterile isotonic 
HEPES buffer containing 5% glucose to reach a final lipid concentration 
of 1.2 mM. For the LNP formulation, the LNPs were diluted in sterile 
isotonic HEPES buffer containing 5% glucose to reach a dose of 10 µg 
mRNA per mouse based on the RiboGreen RNA Assay (see above). It is 
important to note that all liposome dispersions had the same (total) 
lipid concentration (that is, 6.25 mg ml–1) and consisted of a comparable 
size; it should also be noted that for all dispersions, the same volume 
was intravenously injected.

Biodistribution of liposomes
The changes in biodistribution of the intravenously injected DiR 
liposomes were verified via repeated measurements using the IVIS 
Lumina II (PerkinElmer) in the far-red region at 745 nm. To enhance the 
detection of liposomes in the major organs, the body and limbs of the 
mice were depilated to maximize the fluorescence to be picked up by 
the IVIS device. Fluorescence images were acquired (acquisition time, 
1 s) following excitation at 745 (±30) nm using an indocyanine green 
(ICG) emission filter. To estimate the blood circulation time of the 
liposomes, either free circulating or engulfed by circulating immune 
cells, the fluorescence from liposomes in the well-perfused, furless 
and non-pigmented ‘throat–neck’ area was measured, to estimate 
the residual fluorescence in the blood circulation. The quantification 
of the fluorescence images was done using the Living Image software 
(PerkinElmer version 4.7.4).

Luciferase expression
In vivo luciferase expression was measured for 10 min following the 
intraperitoneal injection of 100 µl of a luciferin solution (33 mg ml–1, 
Vivoglo Luciferin, Promega) using the luminescence mode on IVIS 
Lumina II (PerkinElmer) with 5 min acquisition time.

Flow cytometry
The mice were euthanized via cervical dislocation and whole blood 
was subsequently collected in EDTA tubes (Sarstedt). Subsequently, 
the liver, lungs, spleen and hind legs were harvested. After single-cell  
suspensions were obtained, a red blood cell lysis step was performed. 
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The synovium was removed from the hind legs post bone marrow 
flushing and subsequently digested enzymatically using 1.00 mg ml–1 
dispase and 0.75 mg ml–1 collagenase. In healthy mice, the harvested 
synovia of three mice were pooled from the ankles of the mice 
(N = 12 mice in total pooled into N = 4 samples). This was not required 
in the case of CIA mice as a much higher number of infiltrated immune 
cells were present in the synovium (N = 4 mice). Finally, the cells were 
stained with antibodies for flow cytometry. The panel consisted of 
Zombie Yellow viability dye, Fc block, CD45 brilliant violet 425, CD19 
brilliant violet 425, CD11b-PerCP-Cy5.5, CD11c-PerCP-Cy5.5, F4/80-APC, 
Ly6G-APC, Ly6C-APC, GR-1-FITC and CCR2-FITC (BioLegend). The 
samples were analysed using CytoFLEX (Beckman Coulter). For the 
more extensive myeloid flow panel, the viability dye VioBlue (dump), 
CD45-VioGreen, CD11b-FITC, F480-PE-Vio615, Ly6C-PerCP-Vio770, 
CD19-VioBlue (dump), CD3e-VioBlue (dump), CD68-PE-Vio770 and 
CCR2-APC (purchased from Miltenyi) and NK1.1-BV421 (dump), 
Ly6G-BV607 and CX3CR1-PE (purchased from BioLegend) were com-
bined. The samples were analysed using the MACSQuant flow cytom-
eter (Miltenyi). All the flow cytometry data were analysed using FlowJo 
software (BD Biosciences version 10.8.1).

Myeloid cell sorting and ImageStream flow cytometry
Living myeloid cells (CD45+CD11b+) of both liposome-injected and 
control mice were sorted from blood and ankle synovium using BD 
FACS Aria III (BD Biosciences). Supplementary Fig. 9 shows the sort-
ing strategy. Next to the liposome colour (DiD), Fc block (BioLeg-
end), the panel consisted of eFluor 780 viability dye (Thermo Fisher), 
CD45-VioGreen (Miltenyi), CD11b-FITC (Miltenyi), Ly6G-BV607 (Bio-
Legend) and Ly6C-PerCP-Vio770 (Miltenyi). After sorting, the selected 
cells were measured on ImageStreamX Mark kII (Amnis), where the lipo-
some uptakes in the monocyte and neutrophil fraction were separately 
evaluated. Supplementary Fig. 10 shows the gating strategy. To verify 
the uptake of liposomes in myeloid cells, the internalization wizard 
provided by the IDEAS analysis software (Amnis version 6.3.23.0) was 
used. For this, the CD11b staining was used for the cell image, whereas 
liposome dye DiD was used as the internalization probe. An erode mask 
was then set on the cells of 4 pixels (Supplementary Fig. 13).

In situ autologous transfusion
DSPC:Chol:PEG liposomes were injected in the tail vein of CD45.1 CIA 
C57BL/6 mice with a CIA score of at least 3 in one of the limbs (front or 
hind leg). After 24 h, peripheral blood was collected in an EDTA tube 
and directly processed by a red blood cell lysis step. Subsequently, the 
blood was centrifuged (10 min, 500×g) to remove the ‘free liposomes’ 
(that is, liposomes that are not taken up by cells) and subsequently 
pooled per three mice. The pooled sample was centrifuged and resus-
pended in maximum 200 µl isotonic NaCl solution and intravenously 
injected in a CD45.2 CIA C57BL/6 mouse with at least a CIA score of 3 
in two hind legs (ankles). Each transfusion contained 7.4 × 106 CD45.1 
leucocytes, with about 9.4% liposome-positive leucocytes, leading to 
an infusion of about 690,000 liposome-positive CD45.1 leucocytes 
into each CIA CD45.2 mouse. Four hours post-injection, the peripheral 
blood and ankle synovium were collected and processed as described 
before. Flow cytometry was performed using the original flow panel but 
the CD19 brilliant violet 425 marker was interchanged by the CD45.1 bril-
liant violet 425 marker (BioLegend) to identify the transfused immune 
cell population. The samples were analysed using CytoFLEX (Beckman 
Coulter). The experiments were repeated with a higher number of 
transfused CD45.1 leucocytes (12.5 × 106 cells). For this, the samples 
were analysed using the MACSQuant flow cytometer (Miltenyi).

Liposome accumulation after myeloid cell depletion  
in CIA mice
Twenty-four hours before liposome injection, the myeloid cells of 
mice with a CIA score of at least 3 in one of the hind legs were depleted; 

therefore, an antibody cocktail of anti-CCR2-mAb (12.5 µg per mouse) 
(BioLegend) and anti-GR-1-mAb (150.0 µg per mouse) (BioLegend) 
was intraperitoneally injected. DSPC:Chol:PEG liposomes were then 
injected in the tail vain of the depleted CIA DBA/1 mice, together with a 
second intraperitoneal injection of the antibody cocktail to guarantee 
the complete depletion of myeloid cells over 48 h. At the same time, 
the control group (that is, regular non-depleted CIA DBA/1 mice with 
a similar CIA score) were injected with the exact same DSPC:Chol:PEG 
liposomes. Twenty-four hours after liposome injection, the peripheral 
blood and ankle synovium were harvested and processed as described 
above in both depleted and non-depleted mice.

Statistical analysis
The applicable statistical test is mentioned under each graph. Statistical  
analysis is performed using GraphPad Prism 6 (GraphPad). Significance 
levels are indicated with asterisks: *, ** and *** represent the adjusted  
p values of p < 0.05, p < 0.01 and p < 0.001, respectively.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the 
Article and its Supplementary Information. Other relevant data are 
available for research purposes from the corresponding authors upon 
request. Source data are provided with this paper.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Methods
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ChIP-seq

Flow cytometry
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Antibodies
Antibodies used Flow cytometry liposome uptake experiments:  

CD45-VioGreen, anti-mouse, Miltenyi, 130-110-803, Clone REA737 
CD11b-VioBright FITC, anti-mouse, Miltenyi, 130-113-805, Clone REA592 
CD19-Vioblue, anti-mouse, Miltenyi, 130-112-041, Clone REA749 
F4/80-PE-Vio615, anti-mouse, Miltenyi, 130-123-913, Clone REA126 
Ly6C-PerCP-Vio700, anti-mouse, Miltenyi, 130-111-920, Clone REA796 
CD192 (CCR2)-APC, anti-mouse, Miltenyi, 130-119-658, Clone REA538 
CD3ε-Vioblue, anti-mouse, Miltenyi, 130-118-849, Clone 17A2 
CD68-PE-Vio770, anti-mouse, Miltenyi, 130-118-849, Clone REA835 
NK1.1-BV421, anti-mouse, Biolegend, 108731, Clone PK136 
Ly6G-BV605, anti-mouse, Biolegend, 127639, Clone 1A8 
CX3CL1-PE, anti-mouse, Biolegend, 149005, Clone SA011F11 
CCR2-FITC, anti-mouse, Biolegend, 150607, Clone SA203G11 
GR-1-FITC, anti-mouse, Biolegend, 108405, Clone RB6-8C5 
F4/80-FITC, anti-mouse, Biolegend, 123107, Clone BM8 
F4/80-APC, anti-mouse, ThermoFisher, 17-4801-82, Clone BM8 
Ly6C-APC, anti-mouse, Biolegend, 128015, Clone HK1.4 
Ly6G-APC, anti-mouse, Biolegend, 127613, Clone 1A8 
CD11c-PerCP-Cy5.5, anti-mouse, Biolegend, 117327, Clone N418 
CD11b-PerCP-Cy5.5, anti-mouse, Biolegend, 101227, Clone M1/70 
CD19-BV421, anti-mouse, Biolegend, 115537, Clone 6D5 
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CD45-BV421, anti-mouse, Biolegend, 103133, Clone 30-F11 
 
Depletion antibodies: 
CCR2, anti-mouse, Biolegend, 160102, Clone QA18A56 
GR-1, anti-mouse, Biolegend, 108401, Clone RB6-8C5 
 
FACS sorting and subsequent Imagestream analysis: 
CD45-VioGreen, anti-mouse, Miltenyi, 130-110-803, Clone REA737 
CD11b-VioBright FITC, anti-mouse, Miltenyi, 130-113-805, Clone REA592 
Ly6C-PerCP-Vio700, anti-mouse, Miltenyi, 130-111-920, Clone REA796 
Ly6G-BV605, anti-mouse, Biolegend, 127639, Clone 1A8 
Viability dye-eFluor780, Thermo Fisher, 65-0865-14 

Validation All antibodies used for flow cytometry were validated for flow cytometry (Manufacturer's website) and titrated by us prior to use.  
The depletion antibodies were verified in a trial experiment to validate their use (Supplementary Figure 15B)

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals mice, DBA/1, male, 8-10 weeks at CIA immunisation 
mice, C57BL/6, male, 8-10 weeks at CIA immunisation 
mice, C57BL/6 CD45.1 transgenic, male and female, 8-10 weeks at CIA immunisation

Wild animals This study did not involve wild animals. 

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight The experiments were approved by the local Ethical Committee on Animal Experiments (Ghent University, ECD 18/16).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Blood: blood collected in EDTA tubes - RBC lysis step 
Synovium: was harvested from ankle and knee after bone marrow flushing from hind legs. Single cell suspension was 
subsequently obtained after enzymatically digesting the synovial tissue with dispase (1 mg/mL) and collagenase VIII (0.75 mg/
mL).

Instrument CytoFLEX V3-B4-R3 (Beckmann Coulter), Miltenyi MACSQuant16 (Miltenyi), BD FACS Aria III (BD Company) and Imagestream 
X Mark kII (Amnis)

Software CytExpert (CytoFLEX), MACSQuantify (MACSQuant), BD FACSDiva (FACS Aria) and Amnis Imagestream (Imagestream) for 
collection. FlowJo(BD company) and IDEAS (Amnis) for analysis.

Cell population abundance For all experiments, the entire samples was used for flow cytometric analysis, so no sorting was performed. The liposome-
positive cell fraction differed between liposome type and time after injection and is shown throughout the manuscript.  
For imagestream analysis, a pre-analysis sorting was done on viable CD45+CD11b+ cell fraction in blood and synovium. 

Gating strategy The gating strategy can be retrieved in Supporting Information 1, 2 (CytoFLEX data), 7 (MACSquant data), 9 (BD FACS Aria 
sorting), 10 (Imagestream analysis) and 13 (Internalization wizard of IDEAS software).  
First viable cells were selected by gating: all cells (1) single cells (2) and viable cells (3). The latter excluded the dead cells in 
CytoFLEX analysis and both the dead cells as well as the dump chanel (CD19, NK1.1 and CD3e markers) in MACSQuant panel. 
 
Subsequently the different types of myeloid cells were gated in both panels (i.e. monocytes, monocyte-derived macrophages 
(MoMFs), granulocytes) and others (DCs, B-cells, etc.) in CytoFLEX panels as overviewed in Supplementary Information.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


