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A B S T R A C T   

Design of experiment (DoE) is a powerful statistical technique used for variable screening and optimization. It is 
based on the simultaneous variation of multiple factors with the objective of finding the configuration of pa-
rameters that optimizes one or more outputs of interest, while using the minimal number of experimental runs 
required for testing, resulting very cost and time-efficient. Despite the high potential offered by this approach for 
innovation and process optimization, DoE is still only marginally applied in the field of nanomedicine and often 
its rationale application and analysis result is difficult to grasp by many. In this review, we discuss some of the 
latest applications of DoE in the formulation of nanovectors used for drug delivery across many different ap-
plications. First, we introduce general principles of DoE to the reader, which are indispensable to understand the 
works we report. Then, we give particular attention to the process variables, the specific designs, and the 
readouts used for process analysis and optimization for different classes of nanovectors. Finally, we try to delve 
into the current shortcomings of DoE application and possible future directions that could be employed to further 
improve the information that can be derived from this approach.   

1. Introduction 

The development of robust protocols and the establishment of a 
products are the essential building blocks upon which scientists advance 
knowledge and technology in any field of inquiry. This includes the field 
of nanomedicine. In particular, the creation of nanoparticle-based drug 

delivery systems (DDSs) involves many different experimental condi-
tions that could influence the outcomes and that largely depend on the 
specific material in study. 

Any unknown process can be thought of as a “black box” in which the 
operator introduces materials and choses specific settings. The process 
returns some measurable outputs (Fig. 1A). Thus, process optimization 
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requires both understanding which settings (or parameters or variables) 
are relevant, and among these, select the best level of each to achieve a 
desired output. To achieve this, it is necessary to correlate the variables 
with the outcome features (Fig. 1B). When trying to optimize the fea-
tures of these nanovectors, researchers are presented with the dauting 
task of understanding the significance and effect of many experimental 
factors in the process output. This hurdle induces scientists to use two 
main approaches. 

The first one is a trial-and-error strategy, in which each variable is 
tuned singularly, selecting the best outcomes before optimizing the next 
one (Fig. 2B). This approach requires a limited number of experiments 
and can lead to good results. However, this strategy presents intrinsic 
limitations. Firstly, it is not possible to understand if some variables have 
more leverage than others, and no information is acquired on the 
possible synergistic or antagonistic effects of multiple variables in-
teractions. Secondly, the final nanovectors may not be the best possible 
ones in the considered experimental range, but just a “local optimiza-
tion” that is derived from the narrow scope of the screening. 

The opposite approach to trial and error consists a complete 
screening of all the conditions in the selected experimental range 
(Fig. 1C). This strategy allows to acquire complete knowledge on the 
process. However, it can require a very high number of experiments to 
optimize even a handful of experimental factors, and becomes expo-
nentially more expensive to perform when increasing the number of 
considered parameters and their different levels. This can require a very 
high amount of resources and workforce that can outweigh the benefits 
deriving from an optimal outcome. 

Design of Experiments (DoE) tries to bridge the gap between these 
two opposite approaches (Table 1). DoE is a statistical methodology 
based on the simultaneous tuning of experimental parameters. It allows 
to create an optimal set of experiments that provides the maximal 
amount of information on the process, depending on the objective of the 
study. Thus, DoE allows to compromise some level on information to 
significantly reduce the time and resources allocated to the under-
standing and optimization of any given process (Fig. 2D). This powerful 
tool can be used efficiently in research, when the aim is to quickly select 
only variables with a significant effect on the final outcomes and to 
optimize them to achieve the desired results. This is especially relevant 
in research groups with limited workforce and resources. 

Despite its high potential, DoE is often overlooked outside of the 
engineering field, and its effective application and correct interpretation 
can result challenging to non-specialists due to the complex mathe-
matical theory it involves. This is demonstrated the very small per-
centage of articles published in PubMed that apply DoE in their studies. 
Although, this percentage increased in the last twenty years, it still 
represents only 2% of the overall publications on nanomedicine (Fig. 3). 

In this review, we offer a practical guide on the use of DoE to opti-
mize nanovectors for drug delivery. We will focus on elucidating DoE 
terminology, discuss recent and most relevant examples of DoE appli-
cation to nanomedicine, and give some practical advice on how to apply 

DoE to any nanoparticle study, including future directions. Despite not 
being an extensive discussion on DoE, we believe this article can give the 
basic tools to understand DoE to a wider public, and communicate the 
potential it holds for discovery and innovation, and give a primer on 
how to implement it, together with possible sources for more in depth 
DoE exploration. 

2. Key concepts of DoE 

In this section, we will present some key concepts commonly applied 
to DoE, and their rationale, in glossary form to facilitate their consul-
tation. These summary definitions are not exhaustive on the matter, and 
we point the reader to ad hoc manuals for in-depth discussion of DoE 
[1,2] and of the mathematical theory behind the generation of different 
designs. Design generation and subsequent analysis is commonly per-
formed by specialized softwares, most of which we report for each 
analyzed publication in Tables 4 to 8. 

Critical Process Parameters (CPPs): a CPP represents any factor or 
setting that is considered for the performance of an experiment or the 
analysis of a process. CPPs can be quantitative (e.g., formulation tem-
perature, concentration of reagents, mechanical stress, flow rates in 
microfluidics systems), can be qualitative (e.g., using different lipids or 
polymers with different features in the formulations) or can be a mixture 
component (e.g., a molar ratio of the different NPs components). CPPs 
can be controlled or not. If a CPP cannot be fixed by the operator (e.g., 
batch of a chemical, environmental conditions of the laboratory), it is 
considered a nuisance or noise factor (NF). The range of CPP values 
defines the experimental space of the study. 

Critical Quality Attributes (CQAs): CQAs are any measured process 
output . CQAs can also be quantitative (e.g., NPs size, size distribution, 
zeta potential (ZP), loading efficiency, payload release profile) or 
qualitative (e.g., NPs shape, or acceptability criteria). In some instances, 
the CQAs are grouped as Quality Target Product Profile (QTPP). 

Design: a design is a set of different experimental runs. Each run can 
be represented as a point in a multidimensional space, in which each 
dimension is represented by a CPP (independent variable) or by a CQA 
(dependent variable). 

Model: a model is the mathematical equation that correlates CPPs to 
each CQA. This interpolation can be performed using a variety of 
different regression methods. Each correlation is represented by a 
polynomial equation in which every CQA is a CPPs sum, each CPP 
exerting its effect though a coefficient. The equation can include linear, 
quadratic or cubic effects of each CPP, or the interactions between two 
or more CPPs. The complexity of these equations is increases with the 
number of experimental runs in the design that allow to elucidate more 
information. 

Two- or multi-factor interactions: Two or more CPPs changing 
simultaneously can have effects that are higher or lower than the sum of 
single CPPs. This constitute synergistic or antagonistic multi-factor 
effects. 

Fig. 1. Schematic representation of processes or systems as black box (A) and the different influences of factors in the final output (B).  
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Center point: a center point is an experimental run located at the 
center of the experimental space and localized by intermediate values of 
all CPPs. If multiple center points are present, they are distributed 

homogeneously within experimental set. The center points are useful to 
check for process stability, since unstable center point values are 
symptom of a process with inconsistent results. Center points also allow 
to see if the CPP to CQAs relations across the experimental space are 
linear or not. This can suggest to create enhanced designs to account for 
nonlinear effects. Normally, RMS designs give the best performance 
when using 2 to 5 center points [1]. 

Degrees of freedom: This term indicates how many direct compari-
sons can be performed within a design. This is of critical importance to 
understand how much information can be elucidated from a number of 
experimental runs. A direct comparison is defined as two experimental 
runs that change only by one CPP value. 

Confounding and aliasing: this term indicates the impossibility to 
understand which CPPs, and to what extent each CPP contributes to a 
CQA. This is critical in designs with few experimental runs that do not 
allow many direct comparisons. Each one of the cofounded CPP is 
defined as an alias. Understanding which factors can be confounded is 
paramount to prevent the erroneous interpretation of a model. 

Blocking: When a design requires the parallel work of multiple op-
erators, or the use of different material batches, there is a chance that 
these factors can affect the experimental results per se. Thus, blocking 
allows to separate the experimental set in homogeneous subsets to 
consider and reduce the effects of this experimental noise. Blocking can 
be performed by dividing the experimental runs into homogeneous 
groups, often using as sorting factor a high order interaction not studied. 
Thus, a high order interaction will be confounded with the blocking 
effect itself. When the blocking does not affect the confounding patter of 
the design, it can be considered orthogonally blocked. 

Design resolution: this term indicates the confounding pattern of a 
design. Specifically, in resolution III designs no main CPP is confounded 
with any other factor, but two factors’ interactions can be confounded 
with main factors and with each other (Fig. 4A). Resolution IV designs 
do not have confounding among main factors and among main factors 
and two factors’ interactions, however, interactions are confounded 
with each other (Fig. 4B). Resolution V designs have no confounding 
between main factors and two factors’ interactions, but only among two 
factors interactions and higher interactions (Fig. 4C). 

Orthogonality: this propriety indicates how independently each 
comparison can be performed. In an ideal condition, X factors are 
orthogonal if X-1 comparisons (or degrees of freedom) are present in the 
design. 

Randomization. When performing a set of experiments, sometimes it 
is not possible to perform all the runs in parallel. This constraint dilates 
the time required to complete the set and can require the repeated use of 
instruments and materials. However, materials can degrade and in-
struments can wear out, shifting the results of the experiments during 

Fig. 2. (A) Schematic representation of a two-dimensional experimental space defined by two quantitative experimental factors. The red spots on the surface 
represent undesirable outputs ranges, while green spots desirable outputs ranges, with the dark green circle representing the optimal factors combination. Black dots 
represent an experimental run defined by specific factorial values as coordinates. (B) Schematic representation of a trial and error experimental approach, complete 
screening (C), and a hypothetical design of experiment (S). This image was made using Biorender.com. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Direct comparison of the potential advantages and pitfalls when using a trial-and 
-error, complete screening, or DoE-based approach.   

Trial and 
Error 

Complete 
Screening 

DoE 

Single Factor Effects 
Analysis 

Very 
limited 

Feasible Feasible 

Multiple Factors Effects 
Analysis Not feasible Feasible Feasible if desired 

Maximal Optimization Not feasible Feasible Feasible 
Overall Information on 

the process 
Minimal Feasible Can be decided by 

design 
Number of Experiments 

Required 
Low Very high Minimized by 

design  

Fig. 3. Number of Publications present on PubMed regarding nanomedicine 
and drug delivery systems from 2000 to 2023 (Blue line), Number of these 
publications that include DoE (red line). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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their execution. Randomization allows to perform the experiments in a 
casual order, leveling the effects caused by this shift. 

Variance: variance defines the effect that CPPs can have on a CQA. 
When CPPs acquire values close to the experimental space outer 
boundaries, the variance increases since the difference between the 
boundary point and other points in the space is larger. Vice versa, vari-
ance lowers towards the center of the design. 

Rotatability: this propriety refers to the variance profile of the pre-
dicted values across the experimental space. In a rotatable design the 
variability increases from the center of the space towards its boundaries, 
independently of the specific direction (Fig. 5). 

Optimality: experimental designs are often limited by practical 
hurdles, such as the maximal number of runs, or the limited amounts of 
material available. Thus, many DoE softwares allow to apply optimi-
zation criteria to improve the design features, depending on its final aim. 
Two widely used approaches are the D-criterion and the I-criterion [3]. 
The D-criterion relates to the factor effects variance, while the I-criterion 
focuses on predictive precision. Specifically, the D-criterion improves 
the design ability to elucidate the effect of CPPs or interactions on the 
CQAs. It does this by organizing the experimental runs across many 
different and distant CPP values in the experimental space. However, D- 
optimal design can overlook non-linear factors’ effects, and thus require 
design modifications. The I-optimality criterion instead improves the 
predictions accuracy offered by the final model. I-optimal designs 
involve more experimental runs in the experimental space center, thus 
minimizing the prediction variance in this location., However, variance 

becomes higher than D-optimal designs at the boundaries of the exper-
imental range (Fig. 6). These two criteria are not mutually exclusive, 
since unconstrained designs such as full factorial design can be both D- 
optimal and I-optimal (see next section). 

Desirability functions: these functions are normally defined for each 
CQA when setting up the experiment in ad hoc softwares. This approach 
allows to classify any outcome with a quantitative value for accept-
ability that ranges from 0% to 100%. The desirability functions can aim 
to achieve a specific CQA value or range of values, or maximize or 
minimize a CQA. Often multiple desirability functions are defined for 
multiple CQAs in a single process, and thus the software performs 
optimization by finding the highest desirability value achievable across 
all functions, and it interpolates the CPPs levels leading to this result. It 

Fig. 4. Representation of the different levels of designs resolution III (A), resolution IV (B) and resolution V (C). The green area represents well-resolved single CPPs 
(1,2,3) and multiple factors effects, while the red area represents the confounded effects. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 5. Schematic representation of a two-dimensional design space variability 
defined by two quantitative experimental factors in a non-ratable experimental 
space (left) and a rotatable space (right). This Figure was created using Bior 
ender.com. 

Fig. 6. Prediction variance of D-optimal and I-optimal experimental designs 
presented as fraction of experimental space (A), in which the center of the 
designs corresponds to the origin, and as actual trend across the levels of one 
experimental factor (i.e., concentration, B). This image was taken from [3]. 
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is important to note that sometimes the desirability functions can be 
contradictory, and therefore the software will find a compromise be-
tween them. This can lead to low global desirability values, and it might 
become necessary to remove or to reduce the importance of one of the 
contradicting CQAs. 

F-test and F-score: F-test is a type of statistical analysis applied to 
DoE data, normally performed by ANOVA softwares. This test allows to 
elucidate statistically significant differences between multiple groups of 
data. This is performed by assigning to each data group an F score. F 
scores are calculated by dividing the variance between groups by the 
variance within each group. The more the groups are apart from each 
other and the narrower each group is, the higher the F score becomes 
and the more significant their difference becomes. The F-scores are 
normally correlated with p-values to indicate statistical significance. 
Thus, F-scores can be used to understand if the differences observed by a 
model are significant or are likely caused by noise. 

3. DoE workflow 

The first step when considering DoE is defining clearly the process to 
be studied. This includes a careful selection of the CPPs to be investi-
gated and the CQAs that will be measured. The factors can be selected 
based on previous literature or data suggesting their relevance. It is 
essential to have a very fine control over the selected CPPs to minimize 
the experimental variability. An example of this is the preparation of 
stock aliquots of different reagents and chemicals used in the formula-
tions beforehand. If relevant, factors interactions might be included in 
the design. It is also important consider potential experimental noise and 
plan all activities to reduce it (e.g., randomization, blocking). These 
uncontrolled variables should be accounted for and either removed or 
considered as NFs or noise (e.g., changes in environmental moisture and 
temperature, different material batches, different operators involved). 
Make sure the process is stable enough to perform, and if not, try to 
improve it before trying to apply a DoE that could give no results due to 
excessive variability. This can be established by performing a series of 
repeated formulations by different operators and over time. 

In some instances, it might be useful to apply a process of Failure 
Mode and Effects Analysis (FMEA). The extensive discussion of this 
approach would go beyond the scope of this article since it is not strictly 
related to DoE, and detailed publications on the matter are available [4]. 
Very briefly, FMEA is a process in which all the potential failures in a 
process or product are identified, prioritized and are eliminated or 
minimized. This is performed by classifying each potential failure on the 
basis of a severity score (S, from 1 to 10, higher with increasing severity 
of the failure), occurrence effect (O, from 1 to 10, increasing with fre-
quency), and ease of detection (D, from 1 to 10, increasing with diffi-
culty of detection). Then, failures are ranked by calculating the risk 
priority number (RPN = S ×O ×D). For each failure an adequate control 
is chosen and validated, as well as adequate actions to reduce or elim-
inate the possibility of failures occurring, starting from the ones with the 
highest RPN. Some authors also apply Ishikawa diagram (or “fishbone” 
diagram) to better visualize the different categories of CPPs and po-
tential process pitfalls. 

The CQAs should be accurately and precisely measured using robust 
instruments and techniques that need to be previously validated. In 
some softwares, it is possible to create a hierarchy of CQAs, defining the 
most important ones for the objective of the study. Of note, quantitative 
outcomes summarized by a numerical value (e.g., NPs size, loading/ 
encapsulation efficiency (EE), percentage of release at defined times, 
IC50 values, circulation half-life after administration, reduction of dis-
ease burden in vivo) allow for better modeling of the results. 

The objective of the study must be specified, as well as how much in 
depth it is desired to go in terms of understanding two-or multiple fac-
tors interactions. 

The second step is the selection of a specific design. This step is 
critical because irreversibly defines the amount of information that can 

be acquired, and this cannot be changed in itinere or after performing it. 
Selection of the design will be treated in more detail in the next section. 
It is important to consider the possibility of performing blocking and 
randomization. The general rule applied in this case is “when possible 
block, when not possible randomize”, referring to NFs or noise that can 
be controlled, or that change randomly. It is also possible to test different 
designs, different number of runs and different number of runs or center 
points to iteratively refine the design. 

In the third step, the actual experiments are carried out. It is of 
particular importance to minimize the experimental variability by 
careful quality control and the establishment of standard operating 
procedures (SOPs) that harmonize the work performed by different 
operators. SOPs are normally written down as detailed protocols which 
include adequate controls and pitfalls (e.g. turbidity of the solutions in 
case of material degradation, adequate cleaning of the instruments and 
glassware before and after formulations). Furthermore, each operator 
must record any discrepancy or malfunction encountered during the 
runs. 

The final step is data analysis. In this case as well, softwares are 
widely used to perform extensive data analysis, detecting which CPPs 
are relevant in defining the process variability and outcome, select the 
optimal factors settings according to the goals, and allow for the addi-
tion of new runs to improve the design further if desire. After modeling, 
it also possible to simulate results for any given CPPs levels within the 
experimental space that can also include artificially generated noise (e.g. 
Monte Carlo simulation of a large number of NPs formulations within a 
certain range of CPPs values to check for robustness of NPs size and size 
distribution). Data analysis will also be discussed in more detail in 
sections below. 

It is often convenient to perform multiple studies iteratively. Spe-
cifically, it is common to first run a screening design to select only the 
relevant CPPs, and then perform a second smaller design using only 
these parameters for further optimization. Ultimately this approach is 
more economical and yields more accurate and robust information. The 
second design can consider only significant factors, thus allowing to 
perform less runs for the same amount of information, or it can enable 
more in-depth information with the same number of runs, with less 
aliases, higher resolution, and the possibility to explore factors in-
teractions. Another option is reducing the experimental space to a 
smaller range of CPPs levels with the aim to find the more precisely the 
best conditions for optimization. A third option can be improving the 
process robustness, to ensure better reproducibility. The overall DoE 
workflow is summarized in Fig. 7. 

4. How to choose a specific design for DoE 

As discussed above, when considering applying DoE to the study of a 
process, the most critical point is the selection of a specific design. Thus, 
designs are chosen depending on the final aim of the operator. The main 
objectives normally are:  

• Comparison: this objective considers multiple factors, but the main 
goal in this case is understanding the relevance of one main a priori 
factor under different conditions.  

• Screening: This approach is widely used to select only CPPs that have 
a relevant effect on the process’s outcomes and “screen out” the non- 
significant CPPs. This is especially useful as a first step to elucidate 
only the most relevant factors for further optimization, limiting the 
final number of runs required.  

• Response surface method (RSM): this objective focuses on the 
modeling of interactions between CPPs and CQAs, creating a func-
tion that can be visualized as a multidimensional surface for each 
considered outcome, where the independent variables are the CPPs. 
This objective is used for process optimization, first finding a specific 
point or region on the surface with desirable CQAs and extrapolating 
a predicted optimal set of CPPs values that would lead to it. RSM can 
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also be used to improve the process robustness. In this case, the aim is 
to find “flat” regions of the surface with desirable outcomes, that 
would lead to the same acceptable results even by partially changing 
the factors, making the process less susceptible to CPPs shifts or to 
environmental conditions. 

Other specific objectives for DoE designs include: 

• Optimization of a mixture: this approach is often applied in chem-
istry. In this case the different factors are represented by different 
proportions of ingredients composing a mixture. These experiments 
are conceptually very different from most other designs, since when 
a single component proportion is changed, the others change 
accordingly. Thus, these factors are defined as “co-variate”. This 
feature is important to keep in mind because makes the contribution 
of a single factor very difficult to distinguish from the others unless it 
is removed from the mixture, preventing these experiments to be 
used as a screening approach. In this case the objective is always to 
find the best combination of proportions. 

• Optimization of a regression: in this case, the main aim is to inter-
polate a function to correlate few continuous factors to an outcome. 

However, designs are also chosen depending on the nature of the 
process and the number of CPPs in study and their potential levels. The 
choice of design should also carefully consider the number of experi-
mental runs that are required and therefore the time, workforce and 
materials that define the budget of the overall study. 

Table 2 gives the different types of designs summarized above and 
used in the literature. Table 3 summarizes the pros and cons of each 
design discussed in the following section. In depth discussion on the 

mathematical proprieties of each design is left to excellent ad hoc pub-
lications on the matter [1,5,6] 

5. Specific types of designs  

a. 1-factor design: In this case, one single factor with different levels is 
considered. This is the most elementary design since it works only on 
one axis, keeping all the conditions constant except for the factor in 
study (Fig. 8A). The only modification that can be applied to this 
design is simple randomization to avoid experimental bias due to 
process shifting.  

b. Randomized block design (RBD): This design also considers a single 
factor in study. However, in this case, NFs are considered (Fig. 8B). 
NFs are not included to understand their specific effect on the process 

Fig. 7. summary of the general workflow used for the design of a DoE planning, setup, execution and analysis. This figure was created using Biorender.com.  

Table 2 
Summary table on which Designs can be selected depending on the Experimental 
goal and number of factors considered. This table was adapted by [1].  

Number of 
factors 

Comparation Screening Response surface 

1 
1-factor design 

(Preferably 
randomized) 

NA NA 

2 to 4 
Randomized 
Block Design 

Full factorial or 
fractional factorial 

designs 

Central composite 
designs or Box-Behnken 

5 or more 
Randomized 
Block Design 

Fractional factorial 
or 

Packett-Burman 
designs 

Apply a screening design 
first to reduce the 

overall factors  
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output, and often are difficult to control by the operator, but they can 
still significantly affect the results. Examples of these variables can 
be different instruments or operators. It is thus possible to account 
for these nuisance factors by performing blocking on the experi-
mental runs.  

c. Full factorial design (FFD): This is a combinatorial design in which 
each of the factors assumes two levels only, and all the possible 
combinations of factors levels are tested (often indicated as − 1 and 
+ 1 for the lower and higher values, respectively) (Fig. 8C). In this 
case, the number of runs can be calculated by the formula n = 2×, 
where n is the number of runs and X the number of factors in study. 
When it is possible to obtain all the combinations of the factors, the 
design will result fully orthogonal, with no confounding between the 
factors. When possible, it is also worth randomizing the design, block 
it, and add center points (normally indicated using the number 0). Of 
note, it is possible to create these designs by mixing factors with a 
variable number of levels, depending on the requirements of the 
study. However, the combinatorial nature of this design can easily 
require a large number of runs for a large number of CPPs and if each 
CPP has more than two values.  

d. Fractional Factorial design (FrFD): this design is created as a fraction 
of a FFD. It is useful especially when dealing with a high number of 
factors that would result in a prohibitive number of runs. Normally, 
the FrFD is created as a half (2×-1) or as quarter (2×-2) of its original 
FFD. This design fraction often corresponds to one block of the FFD 
(Fig. 8D) [7,8]. Importantly, when reducing FFR to FrFD a loss of 
information occurs, often losing the possibility to estimate for higher 
interaction effects, and thus FrFDs have a lower resolution than 
FFDs, and aren’t orthogonal. Thus, it is necessary to assume the low 
effect of factors interactions when choosing this design. Thus, FrFDs 
are only used for preliminary studies to select the most important 
CPPs for further analysis.  

e. Packet-Burman designs (PBDs): These designs have the advantage of 
increasing the number of runs but the formula n = 4xinstead of the 
FFDs n = 2×, lowering the number of runs when many factors are 
included [9]. Despite being very economic, PBDs can be used only for 
main effects estimations, since the main effects are confounded with 
two-factor interactions (and have thus only resolution III).  

f. Central composite designs (CCDs, also called Box-Wilson): These 
designs are created from a FrFD with one center point. However, in 
this case the design is augmented by adding additional “star points” 
positioned in intermediate positions between the extremes of the 
experimental space (Fig. 8E-G) [10]. The position and distance from 
the center depend on the specific CCD subtype selected, number of 
runs and the potential blocking. CCDs are classified in:  

i. Central Composite circumscribed Designs (CCCDs): in this case, 
the star points are generated by rotating the extreme points on a 
hyper-spherical shape, slightly enlarging the experimental space. 
In this way, each factor has five levels. These deigns give very 
good predictions, and allow for orthogonal blocking (Fig. 8E). 

ii. Central Composite Face-centered Designs (CCFDs): in these de-
signs, the star points are in an intermediate position between the 
extremes along the margins of the experimental space(Fig. 8F). 
These designs provide good predictions but, in some cases, 
cannot estimate pure quadratic effects. In this instance each CPP 
has four levels. CCFDs do not allow for orthogonal blocking.  

iii. Central Composite Inscribed designs (CCIDs): These designs can 
be used when the boundaries of the space are already at their 
maximum or minimal possible values, and thus it is not possible 
to expand the experimental space further. Thus, the star points 
are defined on the extremes of the experimental space and the 
vertices of the design are inscribed within them (Fig. 8G). Like in 
CCCDs, each CPP still requires five levels. However, the pre-
dictions of these designs are generally less accurate. 

Importantly, only CCCDs and CCIDs are rotatable.  
g. Box-Behnken designs (BBDs): This quadratic design is composed of 

experimental runs that are positioned at intermediate points between 
the extremes of the experimental space (Fig. 8H) [11]. It is thus 
possible to imagine a hypersphere encompassing all the points of the 
design and extending slightly outside of the experimental space. 
BBDs require less runs than other RMS designs when studying less 
than four factors. Importantly, the predictions of these designs are 
significantly less accurate in the space close to the “missing” edges of 
the experimental space, and allow only limited orthogonal blocking. 

Of note, two-level designs with center points can only detect 
quadratic effects by lack-of- fit analysis, but not estimate them, since it is 
not possible to model them. To estimate quadratic effects, it is necessary 
to employ RSM design with at least one center point and three levels. 
Furthermore, for cubic effects at least four level RSM design are 
required.  

h. Taguchi arrays. An important subset of factorial design is Taguchi 
arrays [12]. From a mathematical standpoint, these designs are not 
different from FFDs and FrFDs. However, the Taguchi method is 
focused on optimizing the robustness of the process outcome, in most 
cases the performance of a certain device. This is especially impor-
tant in the case of product development, since it is not be possible to 
control the conditions a certain product would be used outside of the 
laboratory. The designs can be adapted to this end by using a regular 
FFD or FrFD to create the experimental set, using the CPPs that can 
always be controlled or that are used in for example the production 
process, and thus cannot be changed after the product reaches its 
point of use (Fig. 8I). However, another design can be generated 
“around” each experimental run, considering CPPs that can be 
encountered during product usage, that being NFs (Fig. 8J). This 
second “outer” array would thus be orthogonal to the “inner” design. 
Ultimately, these designs would consider both screening for process 

Table 3 
Summary of the pros and cons of the different designs discussed in Section 5.  

Design Pros Cons 

FFDs 

No confounding / aliasing among 
CPPs and factor interactions 
(high number of degrees of 

freedom). 

Can require a very high number 
of runs with numerous CPPs in 

study.  

Every CPP has only a maximum 
and minimum value, not 

allowing to model quadratic 
effects. 

FrFDs Requires only a fraction of runs of 
the corresponding FFD. 

High order interactions often 
become confounded / aliased.  

Every CPP only has a maximum 
and minimum value, not 

allowing to model quadratic 
effects. 

PBDs 
Useful to screen a high number of 

CPPs at once. 

Has very low resolution and 
allows only to estimate main 

factors effects. 

CCDs 

Every CPP has more than two 
values, can estimate quadratic 

effects and high order 
interactions, and thus can be used 

for RSM analysis. 

Require careful consideration of 
which CPP subtype to employ.  

Can require a high number of 
runs due to the multiple levels of 

each CPP. 

BBDs 
Normally requires a lower 

number of runs than other RSM 
designs. 

There is no information on the 
process at the corner boundaries 

of the experimental space. 

Taguchi 
arrays 

Allows to account for NFs and to 
measure the robustness of a 

process output under shifting 
environmental conditions. 

Might require a higher number or 
runs to account also for NFs. 

MDs 
Allow to analyze complex 

mixtures with potentially high 
number of components 

Each mixture component 
covariates with the other, 

making difficult to estimate the 
effect of each CPP.  
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Table 4 
Summary of all the discussed studies involving DoE application to polymeric nanovectors as drug delivery systems.  

Formulation Design Software Process CPPs CQAs Objective References 

PLGA NPs CCD 
16 runs 

Statgraphics 
Centurion 

Solvent displacement Polymer concentration, 
drug concentration, and 
surfactant concentration 

Size, PDI, ZP, 
EE 

Improve drug residence 
and penetration in the eye. 

[16] 

PLGA NPs Taguchi orthogonal array for 
screening (8 runs), followed by 

BBD (17 runs) 

Design Expert® Modified solvent 
displacement 

PLGA conc 
Pol188 conc 

Sonication amplitude 

Size, PDI, ZP, 
EE, drug 
release 

Improve CAP efficacy in 
CRC 

[17] 

PLGA NPs PBD (30 runs, for screening), 
followed by 

CCD (30 runs for optimization) 

Design expert Modified solvent 
evaporation 

Polymer amount; surfactant concentration; homogenization speed; 
homogenization time; ultrasonication time 

Size, PDI, EE Improve cilnidipine oral 
bioavailability. 

[18] 

PLGA NPs CCD 
26 runs 

Statgraphics 
Plus 5.1 

Solvent displacement pH and Tween 80 concentration in the aqueous solution and 
concentrations of PLGA and RLZ 

Size, PDI, ZP, 
EE 

Improve the ocular 
delivery of RLZ 

[19] 

Poly- 
ε-caprolactone 

NPs 

Factorial design (12 runs) followed 
by BBD (17 runs) 

Design Expert® Solvent displacement Polymer and poloxamer concentration, 
Sitting speed and phases volumes ratio. 

Size, EE Improve oral 
bioavailability of CIL 

[20] 

Poly- 
ε-caprolactone 

NPs 

14 runs screening PBD followed by 
46 runs BBD (RSM) for 

optimization 

Minitab (PBD) 
Design Expert 

(BBD) 

Modified solvent 
displacement method 

Homogenization time, homogenizer speed, 
Sonication time, 
Polymer amount, 
Surfactant amount 

Size, ZP, EE Improve docetaxel 
bioavailability and efficacy 

in vivo 

[21] 

ZNPs BBD 
17 runs 

Design Expert® Nanoprecipitation volume of the zein solutions, stirring speed, water volume Size, EE Drug delivery of DM1 [22] 

PLGA NPs FFDs 
(screening, 17 runs) followed by 

SRD 
(9 runs) 

Statgraphics 
Centurion 

Nanoassemblr 
(microfluidics induced 

nanoprecipitation) 

TFR 
FRR 

PLGA; N–Ac ratio 
PLGA concentration 

Size, PDI, ZP, 
EE 

Fine- tune particles size and 
optimize EE 

[24] 

Cellulose 
nanosuspension 

33 FFD (27 runs) Design Expert® Wet milling grinding bead volumes 
different diameter of zirconium oxide beads 

different milling speeds 

Size 
PDI 
ZP 

improve the oral 
bioavailability of CsA 

[25] 

Chitosan NPs PBD (17 runs) for screening 
followed by BBD for optimization 

Design Expert Ionic Gelation amount of chitosan, amount of sodium STPP, pH of STPP, rate of 
addition of STPP, homogenization speed, duration of 

homogenization, amplitude of ultrasonication, and duration of 
ultrasonication 

Size, EE Improve oral 
bioavailability of tenofovir 

[27] 

Chitosan NPs Screening design (18 runs) 
followed by 18 runs RSM D-optimal 

design (17 runs) 

Design expert Ionic gelation Hyaluronic acid, alginate, dextran, their concentration and the 
concentration of TMC 

Size, PDI Improve the delivery of 
antisense DNA to tumor 

cells in vivo 

[28] 

Gelatin NPs BBD 
(15 runs) 

Design Expert® Desolvation stirring rate, cross-linker solution volume, cross-linking time Size Improve pulmonary 
delivery of methotrexate 

[31] 

Gelatin NPs CCD (15 and 11 runs, for 
nanoprecipitation and for 
desolvation, respectively) 

Design Expert Nanoprecipitation and 
desolvation 

Gelatin amount, 
Surfactant amount, GA concentration 

Size, ZP, EE Improve the release of 
NSAIDs 

[32]  
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parameters to optimize the product features, but also consider the 
performance variability for the outcome of each run. In this way, it 
would be possible to understand the factors effect not only on the 
final outcome, but also on its robustness. Specifically, the standard 
deviation of each outcome under different environmental conditions, 
would be a CQA. This approach is very powerful but still requires a 
higher number of runs compared to the equivalent FFDs without the 
NFs. It is still possible to reduce the number of runs required by 

performing only FrFD on either the “outer” or the “inner” array. 
Taguchi arrays created from FrFDs are highly efficient in monitoring 
the potential presence of factor-noise interactions, but not in 
explaining factor-factor interactions within the inner array. Thus, it 
is advisable to use these kinds of designs in early screening, when 
only many main factors effects are considered, and use the variability 
of the response under noise conditions as just another response to 
consider when screening in and out the inner array factors. 

Table 5 
Summary of studies applying DoE to lipid NPs-based DDSs.  

Formulation Design Software Process CPPs CQAs Objective References 

LNPs FFDs 
(22, 5 runs including a 

center point) 

NA High shear 
homogenization 

Lipids ratio, surfactant ratio Size, PDI, ZP Improve NPs 
biocompatibility for 
dermal permeation 

[34] 

LNPs BBD 
19 runs 

Design 
Expert® 

High pressure 
homogenization 

drug concentration, 
concentration of emulsifier, 

and homogenization pressure 

Drug loading (% 
DL), %entrapment 
efficiency (%EE), 
and particle size 

Improve availability of 
RIF 

[35] 

LNPs FD 
(RSM) 
32 runs 

Design 
Expert® 

High-speed 
homogenization 

followed by 
ultrasonication 

Poloxamer and glyceryl 
monostearate amount 

Size, EE 
Drug release at 8 h 

and 24 h 

Obtain particles with 
small size, high EE and 

slow release 

[36] 

LNPs in 
hydrogel 

1/16 fractional 
factorial design for 

screening followed by 
full factorial design 
(CCD, 13 runs) for 

optimization 

Design 
expert 

High shear 
homogenization 

CPPs lipid content, mixture 
types, surfactant: 

cosurfactant ratio, Surfactant 
mixture content, dispersion 
cooling temperature, and 

homogenization speed 

Size, EE, skin 
retention, skin 

permeation 

Improve itraconazole 
penetration and efficacy 
against dermal fungal 

infections. 

[37] 

LNPs CCD 
20 Runs 

Design 
Expert® 

Ultrasonication and 
gradual addition of 
water to the molten 

lipid mixture 

Lipid concentration 
Dug concentration 

Surfactant concentration 

Size, EE Improve DCX toxicity 
against breast cancer 

cell lines. 

[38] 

LNPs 2*3 asymmetrical FFD NA Ultrasonication and 
gradual addition of 
water to the molten 

lipid mixture 

stabilizer concentration and 
sonication time 

Size, PDI, EE Improve oral 
availability of Gliclazide 

[39] 

LNPs Resolution IV 
screening design 

followed by BBD for 
optimization (17 runs) 

Design 
expert 

Solvent evaporation Amount of lipids, amount of 
surfactant, volumetric ratio 

between phases, stirring 
speed, 

Size, EE Improve cilnidipine oral 
bioavailability 

[40] 

Dried pro- 
liposomes 

CCFD 
9 runs 

Minitab Layer deposition Lipids:drug ratio 
Amount of solid carrier 

Size, EE, Release at 
6 h 

Improve oral 
bioavailability of 

lopinavir 

[41] 

LNPs FFD Design 
Expert® 

Microfluidics 
continuous flow. 

Sonication time 
pH formulation 
Dialysis buffer 

Size, PDI Fine tune mRNA LNPs 
size 

[45] 

LNPs MD 
16 runs 

NA Microfluidic mixing Molar ratios of ionizable 
lipids, cholesterol, PEGylated 
lipid and DOPE as helper lipid 

Size, PDI, ZP, EE 
Change in size 

during incubation 
in amniotic fluids 

mRNA delivery to fetal 
tissues 

[48] 

LNPs Definite screening 
design (18 runs) as first 

step, followed by 
Taguchi FFD (18 runs) 

for optimization 

JMP iLiNP microfluidics 
device 

Percentage of PEG, 
Percentage of cationic lipid, 
percentage of neutral lipid, 
identity, of cationic lipid, 
identity of neutral lipid, 

mRNA lipid ratio 

Particles size, PDI Optimize liver 
specificity and liver 
mRNA expression, 

spleen Luc expression, 
liver specificity. 

[49] 

LNPs Mixture design 16 runs  
Followed by higher 
resolution 12 runs 

mixture design 

NA Microfluidics mixing Ionizable lipids, 
phospholipids (DOPE), 

cholesterol and PEGylated 
lipid ratio 

Size, PDI, 
Transfection 

efficacy, 
cytotoxicity 

Improve transfection of 
mRNA in T cells while 

minimizing cytotoxicity. 

[50] 

LNPs FFD 
26runs 

JMP Micro encapsulate 
microfluidic system 

Carrier lipid identity, 
Lipid concentration, 

Particles concentration 

Luc expression Maximize saRNA 
transfection efficiency 

[52] 

LNPs Definitive screening 
(26 runs) 

Followed by BBD 
(26runs) 

JMP Microfluidics -TFR, temperature of 
formulation, total lipid 
concentration, lipids 

components proportion, 
different ionizable lipids and 

phospholipids, pH of the 
buffer.  

-Type and amount of 
ionizable lipid, amount of 

phospholipid, and pH of the 
buffer 

Size, PDI Zeta 
potential, EE, RNA 

integrity.  

Size, PDI Zeta 
potential, EE, RNA 
integrity, cytokines 
production, protein 

expression. 

Optimize protein 
expression whilst 

minimizing cellular 
activation 

[53]  
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i. Mixture designs (MDs). MDs are arrays in which each CPP considered 
is a component of a mixture and overall sum of the different 
component proportions will always be 100%. When imagining the 
geometry of a MD, it is possible to obtain the space by connecting 
non-adjacent points in an FFD array, in which the boundaries are the 
diagonal across each face of the array (Fig. 8K). This shape is defined 
as a simplex, and can be represented as a tringle for three compo-
nents. Thus, when changing a single component, all the other factors 
also change proportionally. This makes the factors co-variant, and 
therefore the assessment of a single component statistical signifi-
cance is confounded by the others. The two main types of MDs are:  

• Simplex lattice: in this design, all the experimental points are on the 
boundaries of the simplex, and are equidistant from each other 

(Fig. 8L). This design includes thus pure mixtures with only one 
component at vertices of the simplex, and different proportions of 
binary mixtures, depending on how many levels for each component 
are selected. In this way, the experimental points are evenly 
dispersed across the simplex axes.  

• Simplex centroid: It is possible to augment the design by adding 
central point in the middle, obtaining a centroid design which allows 
to understand the mixture behavior within the center of the simplex 
space (Fig. 8M). 

Simplex designs can be enhanced by adding check points in be-
tween the center and the vertices. These points have similar func-
tions to center points in regular factorial designs, allowing for the 
estimation of potential curvature in screening objectives, and 
potentially modeling more complex models when applying RSM. 

Table 6 
Summary of the studies applying DoE to biotechnological and biomimetic DDSs.  

Formulation Design Software Process CPPs CQAs Objective References 

VLPs BBD 15 runs R Studio Sf9 cells infection 
system 

CCI, MOI, TOH Baculovirus infection, 
VLP production, VLP 

assembly, cell viability 
and VLP productivity 

Optimization of VLPs 
production 

[54] 

High five cells 
infection system 

[55] 

RBCs 
membranes- 
coated LNPs 

Full factorial 
design (25 runs), 

32 factorial 
design (9runs), 22 

factorial design, 
Taguchi array 

JMP -Ultrasonication  

-High pressure 
homogenization  

-Co-extrusion with 
RBCs membranes 

-lipid composition, 
type of surfactant  

-Tween concentration, 
composition of the lipid 

phase  

-Amount of Tween, 
production method  

-Vol of RBCs, volume of 
extrusion, 

concentration of 
stearylamine 

-Size, PDI, Zeta potential  

-Size, PDI, Zeta potential, 
EE  

-Size and zeta potential  

-NPs size and zeta 
potential. 

Improve the delivery of 
lovastatin and curcumin 

across the BBB 

[57] 

Leukosomes BBD (18 runs) Statgraphics 
Centurion 

NanoAssemblr TFR 
FRR 

Lipid:proteins ratio 

Size, PDI, Zeta potential Improve the targeting of 
inflamed endothelial cells 

and cytotoxic effect in 
tumor cells. 

[58]  

Table 7 
Summary of studies applying DoE to hybrid DDSs.  

Formulation Design Software Process CPPs CQAs Objective References 

Lipidoid-PLGA 
particles 

32 FFD 
(17 runs) 

Design 
Expert® 

Double emulsion Lipidoid content and 
lipidoid:siRNA ratio 

Size, PDI, ZP, EE, 
toxicity, 

transfection 
efficacy 

Improve the pulmonary 
delivery of siRNA 

[63] 

Lipidoid-PLGA 
particles 

32 FFD 
(17 runs) 

Design 
Expert® 

Freeze drying lipidoid content and 
lipidoid:siRNA ratio 

Size, PDI, ZP, EE 
Transfection 

efficacy, toxicity 

siRNA delivery to lung 
cancer 

[64] 

Lipidoid-PLGA 
particles 

I-optimal RSM 
custom design (25 

runs including 
replicates) 

Design 
Expert® 

Double emulsion and 
freeze drying to create 

the dry formulation 

lipidoid content and 
lipidoid:siRNA ratio 

Size, PDI, ZP, EE 
Transfection 

efficacy, toxicity 

Improve anti TNF-α 
delivery to the lungs 

[65] 

Lipidoid-PLGA NPs One factor-at a 
time 

NA Double emulsion amount of ionizable 
lipid (L5) and the L5 to 

ASO ratio 

Size, PDI, ZP, EE 
High transfection 

Improve ASO delivery [66] 

LPHNPs FFD 
(8 runs) 

Design 
Expert® 

Single-step 
nanoprecipitation 

PLGA amount, lecithin/ 
PLGA ratio (w/w), and 

Tween 80 
concentration 

Size, PDI, EE Improve delivery of RU 
across the BBB 

[67] 

Lactoferrin- 
functionalized- 
TMC-PLGA NPs 

BBD 
(17 runs) 

Design 
Expert® 

Solvent displacement Polymer, drug, and 
surfactant amount 

Size, EE Improve the nasal delivery 
of Huperzine A 

[69] 

Lipid-polymer 
crystalline NPs 

FD (23, 11 runs 
including three 
center points) 

Design 
Expert® 

Micro-emulsification 
followed by sonication 

Amount of docetaxel, 
amount of Pluronic F68 

and F127. 

Size, PDI, ZP Improve docetaxel 
delivery 

[70] 

PDLG-gelatin NPs 33 FFD 
(27 runs) 

Design 
Expert® 

Emulsification percentage of internal 
phase, percentage of 

gelatin and percentage 
of PDLG 

Size, PDI, MDT, K, 
T25% 

Improve piroxicam 
pharmacokinetics after 

intra-articular injections. 

[71]  
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Importantly, different designs can be assembled with each other, 
depending on the nature of the different factors considered (qualitative, 
quantitative, or mixture). For example, a MD can be combined with an 
FFD. One way to visualize their structure would be to imagine that each 
experimental point of a factorial design actually corresponds to a 
mixture simplex (or vice versa). Nowadays, the operator can just specify 
the number, levels and type of CPPs, select a specific objective, resolu-
tion level, number of center pints, blocking and randomization in the 
software and the software can either suggest a type of design or generate 
a brand-new design different from the classical arrays summarized in 
this section. 

6. Analysis workflow for DoE  

1. The first step is inspecting all the data for outliers and possible typos 
by creating several graphs to get the wider picture of the data. These 
include graphs with data plotted across time, across blocks, and 
across the experimental space. It is also important to check for the 
variability of the results, and in particular their normal distribution.  

2. The next step is the creation of the model. Model selection and 
methods of data interpolation are limited by the experimental design 
itself, since the number and position of experimental runs in the 
design array and the design proprieties themselves are based on the 

operator decisions at the moment of design selection. Importantly, 
the model can be improved manually by performing a stepwise 
regression, and it is work performing a trial-and-error process to find 
the best model fit. It is possible to apply an additive strategy, adding 
one CPP at the time until optimal interpolation is reached, or a 
subtractive strategy can be used, removing progressively non- 
significant factors to improve the model fit. It is important to pay a 
lot of attention to this step, because the final model will define which 
CPPs will be used for future experiments and for potential RSM 
predictions. It is also important to test the model assumptions. This 
can be performed with residual graphs. If the model is not violated, it 
is possible to proceed, otherwise, it could be necessary to adjust the 
model or transform the data (e.g. put data as logarithms, percentages, 
normalize them when possible).  

3. Then the model can be used to assess the CPPs significance and 
perform RSM optimization. This is often performed using desirability 
functions. 

4. If the design was used for optimization, validate the model pre-
dictions with multiple runs of the optimized settings. 

Table 8 
Summary of studies applying DoE to different colloidal DDSs used to improve drug solubility.  

Formulation Design Software Process CPPs CQAs Objective References 

Carvedilol co- 
crystals 

CCD 
30 runs 

Design 
Expert® 

Solvent displacement 
with sonication 

concentration of CAR, of 
conformer, of poloxamer 188, 

and AS/S 

Size, PDI, ZP Improve carvedilol 
solubility and 
bioavailability 

[72] 

Nanosuspension CCF 
20 runs 

Design 
Expert® 

Nanoprecipitation Concentration of EM, 
concentration of the 

stabilizer (soluplus) and 
ultrasonication intensity 

Size, PDI improve the 
solubility and 

bioavailability of 
EM 

[73] 

Peptide-DNA NPs FFD 
19 runs 

Design 
Expert® 

Spray drying mannitol concentration, inlet 
temperature, spray rate, and 

spray frequency 

process yield, DNA 
recovery, moisture 
content, Size, zeta 

potential, EE 

Achieve pulmonary 
DNA delivery 

[74] 

Hesperidin 
nanocrystals 

Screening design 
(11 runs) 

followed by a 
RSM design (11 

runs) 

MODDE Spray drying Inlet temperature, amount of 
protectant and feeding rate 

Size Minimize 
nanocrystals size, 
thus improving 

hesperidin solubility 

[76] 

Lam-PVA NPs FFD (30 runs, 3 
center points) 

MODDE Dry milling Milling time, milling speed, 
PVA:Lam ratio 

SIZE, PDI, release after 5 
and 10 min 

Improve the nasal 
bioavailability of 

LAM 

[77] 

Clotrimazole- 
cellulose dry 

nanosuspension 

BBD 
15 

Minitab Hot melt extrusion Feed speed, inlet 
temperature, 
Screw speed 

PDI 
Moisture content 

Increase drug 
solubility and 

release 

[78] 

SNEDDS MD 
16 runs 

Design 
Expert® 

Emulsification by 
addition of water to 

the oil-drug-surfactant 
mixture 

the oil (palm oil), the 
surfactant (Capmul® MCM), 

and co-surfactant (Tween 
80). 

Size, turbidity increase the oral 
bioavailability of 

PTX 

[80] 

SNEDDS MD 
(7 runs followed 

by smaller 
design) 

NA Emulsification by 
addition of water to 

the oil-drug-surfactant 
mixture 

Oil, cosolvent and surfactant Size, Transmittance, 
emulsification grade, EE 

Improve the 
solubility and 

release of celecoxib 
and fenofibrate 
(model drugs) 

[81] 

MTB lyophilized 
nanovaccines 

Custom designs 
from JMP 
software 

(40 runs, 12 
runs, and 15 runs 

respectively) 

JMP Pro Antigen dissolution in 
excipients and 
lyophilization 

DoE1: disaccharide type 
(trehalose or sucrose) and 
concentration (3.5%–10%, 

w/v), mannitol concentration 
(0–1%, w/v), buffer type (20 

mM Tris or sodium 
phosphate), and pH  

DoE 2. glycine and mannitol 
concentration  

DoE3: actors were 
disaccharide type (trehalose 
or sucrose) and concentration 

(2.5%–10%, w/v) 

Size change after 
reconstitution, cake 

quality after 
lyophilization, stability 
and immunogenicity in 

vivo 

Improve long term 
vaccine stability 
while retaining 
immunogenic 

activity 

[82]  
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7. Current DoE applications in nanomedicine 

7.1. Synthetic and natural polymeric nanovectors 

Polymeric DDSs have been widely applied in many pathological 

settings to improve the pharmacokinetics of small molecules and 
biotechnological therapeutics [13,14]. The most used formulation pro-
cess for these DDSs is the solvent displacement method, in which the 
drug and polymer are solubilized in an organic solvent which is then 
gradually added to an aqueous phase, with the polymer precipitation 

Fig. 8. Schematic representation of a single factor randomized (A) and blocked (B) design, a three-factors FFD blocked (C), a FrFD (D), a two factors CCCD (E), a 
CCFD (F), a CCID (G) and a BBD (H). Representation of an FFD (I) which includes NFs according to a Taguchi array (J). Three factors geometrical representation of a 
MD construction (K, red surface). Representation of a Simplex lattice design (L) and a Simplex centroid design (M). This figure was generated using Biorender.com. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and consequent nanoparticles (NPs) self-assembly caused by solvent 
evaporation or by dispersion of a miscible organic solvent in the aqueous 
phase. The size of polymers droplet is normally reduced by homogeni-
zation mechanic stirring, sonication, or a combination thereof. 

This approach has been applied to the production of NPs using the 
biodegradable, FDA-approved poly-lactic-co-glycolic acid (PLGA) [15] 
and poloxamer 188 (P188) to deliver fluorometholone (FMT) for the 
treatment of eye inflammation [16]. The optimized formulations (7.0 
mg⋅mL− 1 of PLGA, 15 mg⋅mL− 1 of P188 and 1.5 mg⋅mL− 1 of FMT) 
showing a slower release and improved eye permeation than an FMP 
commercial formulation (Isoptoflucon®) as well as showing improved 
efficacy compared to Isoptoflucon® in an in vivo swine model of ocular 
inflammation. Another analogous study implemented this approach to 
encapsulate the ant colorectal cancer drug capecitabine (CAP), obtain-
ing NPs with slow release in vitro, improved cytotoxicity in HT-29 CRC 
cells compared to free CAP [17], and ultimately higher bioavailability in 
mouse models. All these studies, despite applying different designs 
demonstrated how NPs size and EE is increased by increase in the 
amount of polymer and drug in the organic phase, since in this case there 
is more bulk material to constitute the particles. On the other hand, 
more surfactant concentration decreased NPs size thanks to its ability to 
reduce the surface tension among phases, diminishing also the PDI, but 
also decreased EE, since the smaller particles have higher interfacial 
surface that favors drug leakage. When applied, homogenization speed 
or sonication time or amplitude decreased NPs size due to higher me-
chanical stress reducing the particle size. 

Another similar application of PLGA particles was the delivery of the 
antihypertensive drug cilnidipine (CIL) [18], with optimal formulations 
demonstrating long colloidal stability and drug retention, slow drug 
release, amorphous structure, and greatly improved drug bioavailability 
in vivo compared to free drug in murine models. In this case however, 
surfactant concentration increased the NPs size, perhaps due to higher 
interactions among its molecules causing the fusion of organic phase 
droplets. This underlines how each material can have different effects on 
a similar process, depending on its proprieties. 

Notably, another investigated variable was pH of the aqueous phase. 
Specifically, a recent work by Esteruelas et al. [19] demonstrated how 
higher pH decreased the size and PDI, ZP and EE of PLGA NPs loaded 
with the anti-glaucoma drug riluzole (RLZ). Interestingly, in this case 
the Tween 80 used as surfactant increased EE. The causes of pH influ-
ence on particles features is not clear since the polymer and surfactant 
are both non ionizable. The optimized formulation in this case resulted 
in a Tween 80 concentration of 3.5% (w/v), a RLZ concentration of 1.5 
mg/mL, a PLGA concentration of 8 mg/mL, and a pH of 5. With particles 
size below 200 nm, negative ZP, PDI below 0.2, and EE above 90%. 

Solvent displacement was also applied by Diwan et al [20] optimized 
the formulation of poly-ε-caprolactone NPs prepared by nano-
precipitation to improve the oral bioavailability of CIL, confirming the 
positive effect of polymer amount on size and EE. Similar results with 
this polymer were also observed by Vardhan et al. [21], who focused-on 
poly-ε-caprolactone NPs optimization to improve the pharmacokinetics 
and efficacy of the antitumor drug docetaxel (DTX) using a modified 
emulsification and solvent displacement approach. This study also 
confirmed the negative effect of sonication time and homogenization on 
NPs diameter. 

Another work by Yu et al. [22] focused on the optimization of zein 
nanoparticles (ZNPs) as drug delivery platform for the antitumor drug 
maytansine (DM1). ZNPs were prepared by precipitation of a zein and 
DM1 DMSO solution in water. The authors applied a BBD to assess the 
effects of the volume of the zein solutions, stirring speed, water volume 
on final drug encapsulation. Despite not offering much information on 
the statistical relevance of the single factors and their interaction into 
the process, this design allowed to obtain ZNPs with suitable size and 
high encapsulation efficiency. These particles demonstrated high uptake 
and improved cytotoxicity against A549 lung cancer cell lines. Ulti-
mately, DM-1 loaded ZNPs demonstrated improved accumulation and 

antitumor efficacy in subcutaneous models of lung cancer. 
An alternative approach to solvent displacement are microfluidics. 

These approaches result more controllable and scalable than traditional 
solvent displacement. The most widely applied microfluidics system 
used for DDSs formulation is the Nanoassemblr™ device. This instru-
ment allows quick and reliable NPs production through the fast micro-
fluidic mixing of an organic phase containing lipids or polymers, and a 
miscible phase that is miscible to the former. Their blending causes a 
change in polarity in the mixture and induces the self-assembly of NPs 
by precipitation [23]. 

Chiesa et al. [24] focused on the optimization of PLGA particles using 
NanoAssemblr™ employing as model drug N-acetylcysteine (N–Ac). 
The selected CPPs were the flow rate ratio between the two phases in the 
device (FRR aqueous: organic), the total flow rate in the system (TFR), 
the PLGA concentration, and polymer:drug ratio. The NPs size was 
negatively influenced by the TFR and FRR due to higher shear stress that 
reduces NPs size and lower polymer concentration during the mixing, 
respectively. Of note, EE was influenced by the TFR and FFR positively 
but negatively by their interaction, while higher drug: polymer ratio also 
increased it. This significance was confirmed by a subsequent RSM 33 

design, obtaining an optimal formulation using 13 mL/min TFR and a 
1:4 FRR. Another RSM extrapolation was performed and obtaining a 
similar optimized formulation with high EE (TFR = 15 mL/min and FRR 
= 1:5). 

More traditional formulation processes have also been used in 
conjunction with DoE. One such instance is offered by Pinar et al [25] 
who focused on the optimization of a wet milling process to produce a 
cellulose nanosuspension to improve the oral bioavailability of the 
immune-suppressive drug Cyclosporine-A (CsA). The CPPs employed in 
this study were grinding bead volumes, the different diameter of the 
beads, and the different milling speeds; and the CQA were particles size, 
PDI, and ZP. The study was performed using a three level 33 FFD. Bead 
diameter and milling speed were identified as the most important fac-
tors. In particular, smaller bead diameter, higher beads volume and 
higher speed led to smaller particles due to higher shear stress applied 
on a larger surface of the NPs mixture. Smaller beads and lower speed 
also decreased the PDI. The optimal formulation was thus produced 
using high milling speed (600 rpm), low bead size (0.1 mm), and high 
bead volume (25 mL), and resulted in particles with 561.2 nm size, 
0.374 PDI, and − 24.4 ZP. The particles were colloidally stable over 9 
months, improved CsA apparent solubility, showed slow drug release in 
acidic pH, but fast release in simulated intestinal fluids, and improved 
CsA bioavailability in fed rat model, albeit slightly lower in fasting an-
imals compared to the current CsA commercial product (Sandimmun 
Neoral®). 

Ionic gelation allows the formulation of gel NPs by gradually adding 
a negative ion to a positively charged polymer and drug mixture, 
inducing its gelation under stirring in gel NPs [26]. Shailender et al. [27] 
performed the optimization of chitosan NPs to improve the enteric 
bioavailability of the antiretroviral prodrug tenofovir disoproxil fuma-
rate using ionic gelation. The authors applied a low resolution PBD to 
screen out some CPPs among the ones selected:amount of chitosan, 
amount of sodium tripolyphosphate (STPP) used as gelation agent, pH of 
the STPP solution, rate of addition of STPP, homogenization speed, 
duration of homogenization, amplitude of ultrasonication, and duration 
of ultrasonication. The CQAs were NPs size and EE. The only three CPPs 
selected for the further BBD-based optimization were chitosan amount, 
amount of STPP and duration of sonication. As shown in above 
mentioned studies, NPs size was increased by chitosan amount and by 
STPP, but decreased by sonication time, with a similar trend also for EE. 
The optimized formulations demonstrated a suitable size of 200 nm, PDI 
around 0.2, slightly negative ZP, and 50% EE. The particles demon-
strated improved intestinal permeation using ex vivo inverted rat intes-
tinal sacks. Furthermore, oral administration in vivo in rats 
demonstrated superior bioavailability compared to the free drug. 

Similarly, Baghaei et al. [28] optimized polymeric NPs using either 
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alginate, hyaluronic acid, or dextran as gelation agent to prepare tri-
methychitosn (TMC) NPs to deliver DNA encoding for an antisense 
sequence of the Human SET1 (h-SET1). This oligonucleotide exerts 
antitumor activity by interfering with histone methylation [29]. The 
authors selected as CPPs the polymer concentration and the concen-
tration of gelation agents. They demonstrated that particles size and PDI 
decreased with lower polymer concentration. Furthermore, the authors 
performed a second D-optimal design for NPs optimization using only 
different polymers and polyelectrolyte concentration as CPPs. Hyal-
uronic acid showed the best features as gelation agent with a concen-
tration between 0.2 and 0.47 mg/mL of TMC and hyaluronate: 0.35 mg/ 
mL. Indeed, the particles demonstrated a size around 50 nm, low PDI 
and almost 100% DNA EE. The NP also reached the tumor mass after 
intravenous injection in 4 T1 xenograft mouse model. 

Another polymeric NPs formulation process is the induction of pro-
teins and drugs precipitation by changing the polarity of their solution 
using an organic solvent and inducing the assembly of particles using a 
chemical crosslinker, in a process defined as desolvation [30]. This 
approach was used Abdelrady et al. [31] for the optimization of gelatin 
nanoparticles for the pulmonary delivery of methotrexate (MTX) against 
pulmonary cancer. This work employed gelatin as polymer, acetone as 
desolvation agent, and glutaraldehyde (GA) as crosslinker. A BBD with 
three levels was employed, considering the stirring rate, cross-linker 
solution volume, cross-linking time. The aim of the design was to opti-
mize particles size to improve their pulmonary delivery by inhalation. 
The study demonstrated that it was possible to reduce the particles size, 
as well as increasing the stirring speed during the process. The process 
yielded gelatin NPs formulation with suitable features and in accordance 
with the predictions, slow trypsin-dependent MTX release, good in vitro 
uptake by macrophages and lung cells, improved cytotoxicity compared 
to free MTX, and importantly, suitable aerodynamic proprieties for lungs 
deposition after inhalation. 

Koletti et al. [32] focused on the optimization of gelatin NPs to 
improve the administration of non-steroidal anti-inflammatory drugs 
(NSAIDs) prepared by desolvation and nanoprecipitation. For both for-
mulative approaches, the authors employed a first one-variable-at-a- 
time approach to find the best desolvation agent and surfactant type 
for the nanoprecipitation, demonstrating that particles size increased 
using polysorbate 20 and 80 instead of poloxamer 408 and 188. 
Furthermore, ethanol as desolvant led to smaller NPs. Thus, the authors 
employed poloxamer 407 as stabilizer and acetone as desolvant. Then 
the authors applied a CCD to screen the effect of stabilizer’s concen-
tration, gelatin’s content, and glutaraldehyde content on the NPs size 
and zeta potential. All three factors had influence on the CQAs: gelatin 
content increased particle size, as did to a lesser extent GA concentra-
tion. The ZP acquired more negative values at intermediate values of 
gelatin concentration and at either the highest or lowest poloxamer 
concentration. Gelatin content also increased EE. Furthermore, 
increasing glutaraldehyde decreased ZP to more negative range. The 
same process was applied to desolvation using acetone, gelatin type B 
and gelatin stiffness as CPPs, applying a CCD. In this case, size was 
higher at highest and lowest amounts of gelatin, and smaller at the ex-
tremes of GA concentration range. ZP in this case became more negative 
with increasing the amount of gelatin. Gelatin content also increased EE. 
Of note, to create predictive models for optimization, the authors used in 
parallel a traditional multiple regression analysis approach, and also 
applied artificial neural networks (AI) with the aim to improve the ac-
curacy of the models. Despite the neural networks performing a better 
statistical interpolation of data thanks to their higher computational 
power, the predictions were quite similar between the two modeling 
strategies. The optimized formulations showed a desirable small size, 
high EE, slow two phasic drug release. 

7.2. Lipid NPs 

Lipid NPs (LNPs) have been widely applied to improve the delivery 

of poorly soluble drugs [33]. High shear homogenization and emulsifi-
cation allow to efficiently mix lipid and drug mixtures with a hydro-
philic phase, forming small NPs. This process is not dissimilar from 
solvent displacement, although in this case the organic solvent is 
substituted by a molten lipids’ solution. This process was applied in a 
study from Rigon et al. [34] to improve LNPs for the dermal delivery of 
pharmaceuticals through improved permeation. The CPPs considered 
were the ratios of the LNPs components (stearic acid: behenic alcohol 
ratio) and the ratio of surfactant (poloxamer P40) compared to total 
lipids. As usual, the CQAs selected by authors were the size, PDI, and ZP. 
The only statically significant CPPs were the positive influence of lipids 
ratio and poloxamer ratio in particles size, with PDI and ZP not being 
affected by these factors. The formulation that was optimized from this 
screening resulted have suitable size, homogenous distribution, and 
biocompatible ZP, with only toxic effects only at high doses on mouse 
fibroblasts. 

Chokshi et al. also [35] optimized LNP using high pressure homog-
enization to improve the bioavailability of the antituberculotic drug 
rifampicin (RIF). In this study, the authors employed an RSM through a 
three-level, three-factor Box–Behnken design. The considered CPPs were 
drug concentration, concentration of emulsifier, and homogenization 
pressure. Increasing the surfactant (poloxamer 80) concentration 
reduced significantly particles size and EE. Of note, the number of ho-
mogenization cycles decreased particles size and PDI due to higher shear 
force, as did the homogenization pressure. At the same time, increasing 
the drug concentration also increased the EE and DL, and only slightly 
size and PDI, similarly to the trends observed in solvent displacement. 
After performing data interpolation, the optimized formulation required 
the following settings: concentration of RIF =30% w/w, concentration of 
S80 = 0.1963% w/v, and homogenization pressure = 952.2bar. This 
formulation when prepared demonstrated a size of 445.2nm, %EE of 
84.24%, and %DL of 15.79%, in good accordance with the predicted 
values. Ultimately, these particles demonstrated a spherical, solid 
amorphous structure, with a slow RIF release profile. 

Similar trends in CPP influence were also observed by Pandey et al. 
[36] performed the optimization of a solid lipid NPs formulation to 
improve the efficacy if the antidiabetic drug glibenclamide, as did 
Kumar et al. [37], who focused on the optimization of LNPs to improve 
the topical delivery if the antifungal drug itraconazole. The authors 
selected as CPPs to be screened lipid content; mixture types; surfactant: 
cosurfactant ratio; Surfactant mixture content (Smix); dispersion cooling 
temperature; and homogenization speed, and as CQAs the particles Size, 
skin retention and skin permeation, performed on rat skin ex vivo, and 
EE. After selecting as only relevant CPPs the lipid content and Smix, the 
authors performed a second FFD to optimize NPs composition. Both 
CPPs increased EE; particle size increased mainly with the lipid content, 
as expected, and skin retention increased also with both CPPs, perhaps 
because of overall higher drug encapsulation. However, skin permeation 
was optimal only at intermediate lipids and Smix amounts, since only a 
certain amount of lipids and surfactants can improve skin permeation 
and hydration without interfering with drug release itself. The authors 
thus validated the optimized formulation by producing LNPs with 4.58% 
(w/v) of Compritol C888 and 2.94% (w/v) of Smix content. The LNPs 
demonstrated a size around 260 nm with positive ZP, high EE, with skin 
retention and permeation superior to the current commercially available 
creams with same application. Furthermore, the optimized formulation 
demonstrated good skin tolerability and improved efficacy, removing 
dermal fungal infection on rats 25% faster than the commercially 
available formulations. 

Rarokar et al. [38] obtained analogous results by employing DoE to 
improve the formulation of LNPs for docetaxel (DCX) delivery against 
breast cancer cells. The model was then validated by formulating an 
optimized particle batch, which demonstrated suitable features (size 
around 200 nm and EE above 90%), slow drug release, and improved 
cytotoxicity compared to the free drug in MDA-MB-231 triple negative 
breast cancer cells. 
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Nazief et al. [39] confirmed these trends when studying LNPs to 
deliver orally the anti-diabetes drug gliclazide with improved bioavail-
ability. The authors used a 23 asymmetrical factorial design to study the 
effect of stabilizer concentration and sonication time on the particles 
size, PDI, and EE. Despite this study using ultrasonication and not ho-
mogenization to disrupt the lipid phase, increasing the surfactant con-
centration still decreased particles size. Notably, both time of sonication 
and stabilizer concentration showed minimal PDI at intermediate 
values. EE had a complex function, since it was negatively affected by 
increase in surfactant at short sonication time, but presented a bell 
profile at thigh sonication times. Ultimately, the optimized formulation 
resulted to be 150 mg poloxamer, 10 min sonication, presenting suitable 
245.9 nm size, and a PDI of 0.482 ± 0.026, with high EE. These particles 
demonstrated a spherical shape, a slow drug release, and improved the 
drug bioavailability compared to free gliclazide, with no visible sign of 
gastrointestinal or systemic toxicity in rats. 

LNPs can also be produced similarly to polymeric NPs using a solvent 
displacement approach, as did Diwan et al. This time the authors focused 
on the encapsulation of CIL in LNPs Compritol 888 ATO and poloxamer 
188 [40]. A resolution IV screening design was applied, including as 
CPPs the lipid, concentration of surfactant, ratio of internal to external 
phase volume, magnetic stirrer speed and temperature effect on parti-
cles size and EE. Out of this screening, the authors selected only the 
relevant CPPs: lipid amount, the ratio of internal to external phase 
volume, and temperature to perform a BBD. This latter design evidenced 
how the lipid amount had a positive effect on NPs size, while the phase 
ratio and the temperature had negative effect perhaps due to lower 
viscosity of the internal phase caused by dilution of lipids in a higher 
organic solvent volume. Differently from before, lipid amount had a 
negative effect on drug loading, perhaps due to internal phase over-
saturation, and the phase ratio had only a small positive effect. The 
resulting optimized formulation had a size around 100 nm with a PDI 
below 0.25, was stable for over 3 weeks under storage, and presented a 
slow drug release. Furthermore, the optimal formulation increased by a 
lot the CIL oral bioavailability in mice, resulting also in bigger decrease 
in blood pressure over a longer time compared to the free drug. 

Patel et al. [41] focused on the optimization of a solid proliposomes 
powder encapsulating the antiviral drug lopinavir to increase its oral 
bioavailability, using a layer deposition approach. After performing 
CQAs risk assessment, the study focused on a 9 runs FCCD to optimize 
the lipids:drug ratio and amount of polyalcohol carrier used in the layer 
disposition approach used for formulation. As expected, EE increased 
with an increase in lipid:drug ratio, while NPs size decreased in the 
higher range, and drug release had a curved response with higher release 
in the intermediate range of lipid:drug ratio. On the other hand, the 
amount of medium mainly decreased the NPs size. The generation of the 
model and the application of constraints on liposomes features (vesicle 
size <500 nm, %EE > 85% and drug release >90% in the first hour) 
allowed to define a small experimental space in which the formulation 
would be more robust. The optimized particles after reconstitution 
demonstrated a size of 660 nm, an EE around 90%, a PDI around 0.1, and 
a negative ZP, all suitable features to increase lopinavir delivery. The 
NPs demonstrated an amorphous state and improved lopinavir perme-
ation across Wistar rats’ intestinal sections ex vivo, and even more than 
double Cmax and bioavailability after in vivo oral administration. 

LNPs have also been widely used as DDSs for the administration of 
polynucleotides, including DNA [42], siRNA [43], and mRNA [44]. This 
explosion of application was sparked by the invention of cationic and 
then ionizable lipids which are able to complex and encapsulate poly-
nucleotides and allow them to cross the cellular barrier. 

Nag et al. [45] employed DoE to establish a novel and highly scalable 
flow process for the preparation of LNPs to deliver mRNA. This system 
offered the possibility to modulate the flow conditions, the buffer pH 
during formulation, the time of low intensity sonication after mixing, 
and the final buffer of dialysis, to fine-tune the LNPs size. Obtaining 
particles with precisely defined sizes would allow to modulate particles 

behavior and targeting [46]. In this case, the authors applied a factorial 
design with five levels of sonication times, three levels of pH, and three 
replicates (blocks), divided among three buffer groups, to a total of 54 
formulations. Notably, sonication time (0 to 100 s) and pH levels (4.2 to 
5) were proportional to particles size, obtaining particles in a range of 50 
to 200 nm. Furthermore, PDI was higher when sonication time was low 
and pH low or both CPPs were high. The different buffers used for 
dialysis (PBS pH 7.4, PBS pH 7.2, HEPES pH 6.7, and HEPES acetate pH 
6.7), also influenced the size (with bigger particles for PBS 7.4 and 
HEPES pH 6.7), while the buffer concentration was not too relevant on 
the final particles’ diameter. On the other hand, buffer concentration 
(75% to 90%) influenced in a “U” shape the NPs PDI, with lowest values 
at intermediate percentages. These models were validated accross all the 
experimental space with seven formulations. All these formulations 
could be easily scaled-up to very high volumes. Finally, the obtained 
LNPs loaded with COVID-19 spike protein mRNA elicited good antibody 
response in vivo after intramuscular administration in rabbits. As pre-
viously reported in the literature, particles with size above 120 nm did 
not show much antibody response [47]. This system represents a novel 
and powerful tool to produce new LNPs mRNA formulations. 

Swingle et al. [48] instead focused on the optimization of LNPs 
prepared using a microfluidics device for the delivery of mRNA to fe-
tuses within the amniotic fluid. The authors focused on a MD of 16 
formulations with different molar ratios of LNPs components (ionizable 
lipids, cholesterol, PEGylated lipid and DOPE as helper lipid). The most 
notable trend in this design was a decrease in ZP with an increased 
amount of PEGylated lipid. Out of the 16 formulations, seven were 
screened out since did not have suitable features, including too large size 
or too high PDI. Two formulations (A5 and A12) with the smaller size 
and PDI, and highest encapsulation efficiency and were used for further 
studies. Interestingly, when performing stability studies in mouse am-
niotic fluid, the A5 particles increased substantially their size and PDI, 
while A12 formulations became slightly bigger because of the protein 
corona formation, but resulted stable, as indicated by the PDI. A12 
showed also the highest luciferase (Luc) mRNA transfection efficiency in 
HeLa cells with and without the presence of mouse amniotic fluid. 
Notably, Luc expression was increased by higher amount of cholesterol 
in the molar ratio of the particles, and by lower PEGylated lipid per-
centage, because of improved membrane disruption capabilities, and 
lower steric hinderance to cellular adhesion, respectively. Notably, A12 
particles also showed improved transfection efficacy of luciferase (Luc) 
mRNA in vivo after intra-amniotic injection in pregnant mice compared 
to A5 particles, reaching fetal tissue and accumulating principally into 
the fetuses’ liver. 

In a similar work, Hashiba et al. [49] studied LNPs to deliver mRNA 
to the liver formulated with a microfluidic device and Luc mRNA as 
model cargo. Of note, this study applied in vivo models from the very 
beginning of the screening to investigate LNPs transfection efficiency, 
including as responses not only Luc signal but also liver specificity, 
expressed as liver Luc signal over overall body Luc signal. To this end, 
the authors performed a screening design to select only relevant CPPs. 
From this first screening, the cationic lipid identity and percentage, the 
PEG percentage, and the neutral lipid percentages were selected for 
further optimization. For the second optimization DoE, the authors 
employed a Taguchi FFD, selecting as cationic lipid CL4H6, increasing 
the range of cationic lipid percentage, and lowering the neutral lipid 
percentage range, ultimately working in a smaller experimental space. 
The second screening revealed how CL4H6 and PEGylated lipid pro-
portions increased LNPs size, while neutral lipid and PEG percentage 
were the most relevant CPPs in increasing liver expression of Luc. Ac-
cording to the second design, the LNPs with composition CL4H6/ESM/ 
Chol/PEG-DMG at a molar ratio of 60/5/35/1.5 demonstrated optimal 
Luc expression and specificity. Indeed, these optimized LNPs demon-
strated high erythropoietin expression in mice and high liver accumu-
lation. Notably, this study also investigated possible correlations 
between different responses, such as a positive correlation between 
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LNPs size and liver expression, demonstrating the possibility to apply 
multivariate analysis on top of DoE to elucidate complex interplays 
between NPs features and their biological behavior. 

LNPs can also be used as transfection agents to enable advanced cell 
therapies. An example of this strategy is offered by Billingsley et al. [50] 
who employed LNPs to transfect mRNA for the production of CAR-T cells 
with minimal cellular toxicity. The authors implemented a first 16 runs 
screening design testing different proportions of the different lipid 
components of LNPs and comparing them to a state of the art LNPs 
formulation. The authors evidenced how formulations with higher 
ionizable lipid ratios showed improved delivery with higher phospho-
lipid concentrations ratios and at the same time with lower cholesterol 
in the mixture. Similarly, formulations with higher DOPE ratios 
benefitted from more ionizable lipid and less cholesterol. These trends 
suggested that LNPs with increased ionizable lipid and phospholipid 
ratios and with reduced cholesterol improved mRNA delivery to Jurkat 
cells. These findings were used to generate a more restricted 12 runs 
design with a smaller range of components ratios but higher resolution. 
The optimized formulation resulting from this optimization process 
demonstrated a 3-fold increased transfection efficiency compared to 
previous LNPs with minimal cytotoxicity. This formulation was further 
validated in primary T-cells demonstrating comparable transfection ef-
ficacy but significantly reduced cytotoxicity in comparison with elec-
troporation. This in turn translated to comparable tumor killing of acute 
lymphoblastic leukemia cells by the CAR-T cells. This study has the 
important feature of validating its findings in patient-derived human T- 
cells, which highly increases its translational potential. However, the 
authors do not provide much informations on the proprieties of the 
employed design, somewhat limiting our understanding of the study 
itself. 

Self-amplifying mRNA (saRNA) consist in mRNA construct that 
contain sequences encoding for a viral mRNA-dependent RNA poly-
merase, which allow its self-amplification after transfection, potentially 
boosting protein expression [51]. Blakney et al. used LNPs to deliver 
saRNA to the human skin [52]. The authors applied an FFD to produce 
particles using a microfluidic system and considering as CPP complexing 
lipid identity (C12–200, the zwitterionic lipid cephalin, DDA, DOTAP), 
lipid concentration, NPs concentration, and ratio of cationic lipid to 
cephalin. The authors used as main endpoint the expression of ad hoc 
engineered saRNA expressing firefly Luc, used as model payloads in 
clinical human skin explants. The authors demonstrated how cephalin 
was the complexing lipid with highest efficiency, while DOTAP 
decreased significantly the Luc expression. Furthermore, high lipids and 
high LNPs concentrations demonstrated increased mRNA expression. 
Using a similar enhanced green fluorescence protein (eGFP) saRNA 
construct, the authors also analyzed which were the cells subpopulations 
responsible for LNPs uptake. Unsurprisingly, although most of the skin 
explants are constituted of epithelial cells, a disproportionately big 
fraction of the signal was expressed by the minority of immune cells 
naturally present in the skin (i.e., dendritic cells, T- cells, monocytes, and 
Langerhans cells), and the expressions levels were 6-fold higher 
compared to the standard formulation used as comparison. 

Ly et al [53] also employed LNPs to deliver saRNA comparing it to 
mRNA. The authors employed a two-steps iterative approach to opti-
mization, using first a definitive screening design to screen the main 
effects of CPPs such as the lipids proportions, the total lipid concentra-
tion, the temperature of formulation, the N/P ratio between ionizable 
lipid and nucleotides, the type of cargo (mRNA versus saRNA), different 
types of phospholipids and ionizable lipids, different TFRs used during 
the LNPs microfluidics fabrication, and pH of the aqueous buffer used 
during synthesis, while the CQAs were particles size, PDI, ZP, EE, and 
RNA integrity. The first screening revealed that all factors affected to 
some extent on the CQAs in the study. However, to proceed with the 
second step, the authors selected as CPPs ionizable lipid proportion and 
type, buffer pH, and phospholipid content, while keeping the others 
constant based on the optimal settings underlined by the previous 

screening. The new BBD was then performed using a more restricted 
range and fewer CPPs, and at the same time including additional CQAs 
such as protein expression, and cytokines expression by cells as endpoint 
for activation. In particular, higher pH demonstrated smaller particles 
size, while a higher amount of phospholipid resulted in larger size, 
higher EE and better RNA integrity. Higher ionizable lipid content 
improved the protein expression levels. Thus, the authors applied mul-
tiple desirability functions to find three hypothetical LNPs leads which 
they formulated and confirmed the model predictions, demonstrating 
high levels of protein expression, low cytokines productions, and 
desirable physio-chemical features. This study offers a very interesting 
framework for LNPs optimization, although it does not include any in 
vivo experiments that could have highly benefitted the translational 
relevance of this work. 

Compared to other formulations, the production of LNPs involves 
many more CPPs, and their interactions can be very complex, making 
difficult to draw parallelisms among the studies mentioned above, other 
than generic extrapolation such as higher transfection requiring mostly 
higher percentages of ionizable lipids. 

7.3. Biotechnological and biomimetic DDSs 

DoE can also be applied to a variety of biotechnological production 
process to formulate biological and biomimetic nanovectors. 

In the case of biological DDSs, a work by Puente-Massaguer et al. 
[54] focused on HIV Virus-Like Particles (VLPs) production conditions 
using the Sf9 cells expression system. The factors considered for opti-
mization were the effect of cell concentration at infection (CCI), multi-
plicity of infection (MOI) and time of harvest (TOH). This study included 
as CQAs baculovirus infection, VLPs production, VLPs assembly, cell 
viability and VLPs productivity. These responses were combined to 
obtain an overall desirability function for the process optimization. The 
authors employed a BBD of 15 runs overall, considering two factor in-
teractions and quadratic effects. The highest number of VLPs produced 
were with higher CCI and TOH, but at lower levels of MOI. On the other 
hand, VLPs assembly was decreased by longer TOH. After modeling, 
depending on the goal with the highest weight in the desirability func-
tion, either the number of produced VLPs or the highest encapsulation, 
two formulations were selected. The optimal conditions for the two 
different optimization goals resulted in the same CCI (3.7 × 106 cell/mL) 
and MOI (0.01) but different TOH were required, being 60 h post 
infection for the quality and 80 h post infection for the quantity objec-
tive. Both the optimal conditions were tested to generate two different 
VLPs formulations that validated the model, with results within the 
model predicted range, and with yields comparable to the gold stan-
dards processes. This study is especially relevant since it demonstrates 
how DoE can be applied efficiently not only to strictly technological and 
chemical settings, but also to biotechnologies and biological protocols. 

The same authors applied a similar BBD 15 runs design to perform 
the optimization for the production of baculovirus NPs in High Five cells 
[55]. In this case the CPPs and CQAs were the same as before. The 
percentage of infection greatly increased with MOI and TOH but was 
negatively correlated with CCI. Other CPPs effects were analogous to 
previous studies. Authors applied again desirability functions to per-
formed VLPs optimization. The authors validated the two optimum 
formulations which demonstrated highly improved VLPs production 
compared to traditional VLPs production methods, with high cell 
viability and NPs productivity. 

Cell coating has been widely used as a biomimetic approach to 
improve NPs biocompatibility and circulation time. Red blood cells 
(RBCs) membrane coating represent the prototype of this strategy [56]. 
For instance, Mendes et al. [57] applied DoE to the optimization of 
RBCs-coated LNPs to improve the delivery of the model drugs atorvas-
tatin and curcumin across the blood brain barrier (BBB). First the au-
thors optimized LNPs formulation on their own, successfully translating 
them to their scalable homogenization-based production. Then, the 
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authors performed a Taguchi array to assess the effect of different vol-
umes of RBCs vesicles, number of co-extrusions, and concentration of 
stearylamine used during extrusion to coat the LNPs, ultimately leading 
to small and stable RBCs-coated LNPs. Despite the wealth of data pro-
vided by this work, the authors did not perform any in vitro nor in vivo 
studies to validate the particles delivery across the BBB or therapeutic 
efficacy, and many decisions and NPs designs were performed following 
assumptions from the literature without validating them. These limita-
tions severely hinder the therapeutic potential of this new nanovector. 

Rampado et al. [58] focused on the optimization of biomimetic 
nanovesicles termed Leukosomes to improve the delivery of chemo-
therapeutics in colorectal cancer. Leukosomes are phospholipids and 
cholesterol-based nanovesicles functionalized by engrafting in their 
lipid bilayer membrane proteins derived from leukocytes. This func-
tionalization allows Leukosomes to attain the same proprieties of the 
cells they are derived from, including avoidance of the reticule- 
endothelial system (enabled by proteins such as CD45 and CD47) and 
adhere to inflamed endothelial cells (mediated by integrins). This plat-
form has been applied successfully to many disease settings, including 
sepsis [59], inflammatory bowel disease [60], breast cancer and mela-
noma [61], and osteosarcoma [62]. In this instance, the authors applied 
the Nanoassemblr® microfluidic system for formulating and loading 
doxorubicin using a well-established remote loading approach. A BBD 
was employed to optimize the flow rate ratio between organic phase and 
aqueous phase containing the membrane proteins, the total flow rate in 
the system, and the weight ratio between membrane proteins and lipid 
components. The design elucidated that the FRR had a quadratic nega-
tive effect on particles size but a positive linear effect. Furthermore, 
increasing the amount of membrane proteins made the particles more 
negative, while the PDI was positively influenced by the TFR, FRR, and 
by their interaction effect. Overall, the optimized formulation was found 
to be one created using 1 mL/min TFR, 20:1 lipid: protein ratio, and an 
FFR of 4.88:1 (aqueous: ethanol phase). The particles demonstrated a 
suitable size of 150 nm, a PDI around 0.2, and a more negative zeta 
potential than similar liposomes. The leukosomes demonstrated good 
stability and a loading efficiency for doxorubicin around 90%. 
Furthermore, they retained the membrane proteins on their surface. 
These optimized leukosomes adhered to inflamed endothelial cells and 
macrophages more efficiently than liposomes, with comparable to 
slightly increased cytotoxic effects on colorectal cancer cells. 

7.4. Hybrid NPs-based DDSs 

In some instances, different classes of materials can be combined to 
produce innovative DDSs. 

Among these cases, Thanki et al. [63] optimized lipidoid-PLGA NPs 
to deliver siRNA against lung cancer. NPs were prepared using a double 
emulsion approach. The authors selected a three level 32 FFD to inves-
tigate the effect of two main CPPs (lipidoid content and lipidoid:siRNA 
ratio) on the particles CQAs, in this case size (<250 nm to ensure good 
cellular uptake), PDI < 0.3, a ZP > 0 mV to improve the adhesion to 
cells, EE >60%, high transfection efficiency (IC50 below 5 nM), and low 
toxicity. Interestingly, higher Lipidoid:siRNA ratio reduced particles size 
and PDI, while the increase in lipidoid increased the ZP. Notably, EE was 
higher when both Lipidoid content and the ratio were both low or high 
at the same time. The transfection efficiency was proportional to Lip-
idoid content up to 15% content, while lower ratio was correlated with 
higher cell viability. The optimal operating space was defined based on 
the previously described cut-off values. A combination of settings within 
the experimental space was selected for further analysis using different 
lipid molecules. Of note, this new DDS showed superior transfection 
efficacy in silencing EGFR in lung cancer cells compared to DOTAP NPs 
and other lipidoid molecules, confirming suitable features as predicted 
by the model. 

Similarly, Dormenval et al. [64] applied DoE to the optimization of 
freeze-drying for PLGA-lipidoid hybrid NPs for pulmonary siRNA 

delivery. This study employed a first screening design to investigate the 
effect of device loading, feedstock concentration and outlet temperature 
on the features of the NPs. The authors set as desirable CQAs cut-offs 
final yield above 40%, the moisture content of the dried powder to be 
minimized, the median aerodynamic diameter between 1 and 5 μm, and 
the difference in size before and after freeze drying, to be minimized. 
After screening out the temperature from the first design due to lack of 
significance, a second smaller CCF design was performed to further 
optimize the powder features. The loading was measured in a narrower 
space within the range leading to acceptable particles sizes. The factors 
with largest effect on the response were the device loading increasing 
the size, and the stock concentration positively affecting the yield and 
particles diameter. The second DoE allowed thus to define a fraction of 
the experimental space with acceptable results. The optimal formulation 
selected for further studies demonstrated suitable features as predicted 
by the model and good in vitro activity in RAW 264.7 cells. 

Another work following a very similar approach is offered by Lokras 
et al. [65] who studied Lipidoid-PLGA NPs to improve the delivery of 
anti-TNFα siRNA for pulmonary administration. The CQAs selected for 
the study were NPs size, PDI, ZP, EE, gene silencing and cell viability. 
Lipidoid content and lipidoid:siRNA ratio was selected as CPPs. The 
selected design was rotatable and demonstrated to have good predictive 
power for optimization. The authors applied this productive model to 
circumscribe a fraction of the design space that to achieve the desired 
QTPP (size = 220 nm, PDI < 0.3, ZP around 15-30 mV, EE > 60%, gene 
silencing as IC50 < 25 nM and cell viability as IC50 > 55 nM), but they 
did not select one specific formulation. The authors then applied an 
already optimized freeze dry procedure to obtain dry NPs powder with 
suitable size and morphology. 

These lipidoid-polymer platforms can also be used to deliver 
different oligonucleotides such as antisense oligonucleotides (ASOs). In 
particular, Thanki et al. [66] focused on the optimization of PLGA-lipid 
NPs for ASO delivery prepared using a double emulsion approach. To 
this end, the authors focused on two main CPPs selected after a one- 
factor-at-a-time strategy: the amount of ionizable lipids (L5) and the 
L5 to ASO ratio. The selected CQAs were particles size (<300 nm), PDI 
(<0.3), ZP (≤ 30 mV), high encapsulation efficiency, high loading effi-
ciency, high efficacy of Luc silencing in HeLa Cells, and low cell toxicity. 
These outputs were used to create a desirability function to enable 
optimization, leading to a set of formulations with 14–17% (w/w) L5 
content and L5: Luc-ASO ratios from 11:1 to 21:1, which demonstrated 
improved silencing efficacy compared to reference NPs. A limitation of 
this study is the preliminary one-factor-at-a-time investigation, hinder-
ing the understanding of the process and could have been replaced by a 
screening design. 

Hybrid materials can also be used to deliver small molecule drugs. 
Following this intuition, Ishak et al. [67] optimized lipid-polymer 
hybrid NPs (LPHNPs) formulated via nanoprecipitation to encapsulate 
and deliver Rutin (RU) across the BBB as an adjuvant compound against 
Alzheimer’s Disease, thanks to its anti-oxidative effects and ability to 
interfere with amyloid fibrils formation [68]. This study applied a two- 
level FFD, considering as CPPs PLGA amount, lecithin/PLGA ratio, and 
Tween 80 concentration, each at two levels. The CQAs were the RU EE, 
the NPs size and their PDI. All three factors were found to significantly 
influence particles size and EE, while PDI was influenced only by PLGA 
amount. PLGA amount and w/w ratio both increased EE, and PLGA 
alone increased NPs size, while the ratio had a negative effect on NPs 
diameter. Tween 80 amount instead had a negative effect on these two 
CQAs. For the formulation’s optimization, the desirability function was 
set to maximize EE, while particles size and PDI cutoffs were set as 
≤250nm and ≤ 0.3, respectively. Following this function, the optimal 
results obtained were PLGA amount, ratio, and Tween 80 concentration, 
equal to 75mg, 3/1 and 0.5%, respectively. The predicted formulation 
was produced, demonstrating good accuracy of the predictions. The 
tested formulation demonstrated improved RU delivery to the brain in 
rat models, with similar efficacy to Tween 80, which is considered the 
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gold standard adjuvant for brain delivery thanks to its ability to bind 
ApoE in vivo and be directed across the BBB. 

Meng et al. [69] instead focused on the optimization of Chitosan- 
PLGA NPs to improve the nasal delivery of the anti-Alzheimer drug 
Huperzine A, possibly reducing the systemic side effects that it can yield 
after its systemic administration. The NPs were produced using a solvent 
displacement approach and were functionalized with lactoferrin as 
active targeting moiety. The authors applied a BBD to optimize CPPs 
including polymer concentration, drug concentration and surfactant 
(polyvinyl alcohol, PVA) concentration. The CQAs were NPs size and EE. 
In line with previous studies, polymer concentration had a positive effect 
on EE, but drug concentration and surfactant concentration reduced the 
encapsulation. Drug and polymer amount increased the NPs size but the 
surfactant concentration reduced it. The optimal formulation was then 
calculated to have a polymer concentration of 6.13 mg/mL, a drug 
concentration of 12.98%, and a PVA concentration of 1.00 mg/100 mL, 
with predicted CQAs of 78.78% EE, and size of 120.94 nm, validating 
the model by formulating particles with this small size (150 nm) and 
high EE (73%). The particles showed good mucoadhesive proprieties, 
slow drug release in vitro, low cytotoxicity and good cellular uptake 
compared to non-functionalized NPs. Finally, the lactoferrin- 
functionalized particles were able to reach the brain of mice after 
nasal administration. 

Other hybrid DDSs have been tested by Albano et al. [70] who 
focused on the optimization of lipid-polymer crystalline NPs to improve 
the delivery of the antitumor drug docetaxel, formulated using micro- 
emulsification complemented with sonication. The authors used an 
FFD 23 to screen for the effect of the concentration of poloxamer used as 
surfactant (poloxamer F68 and F127 used together in different ratios) 
and the concentration of the drug in the mixture, on particles CQAs (size, 
PDI, and ZP), with the specific to obtain NPs smaller than 250 nm in 
diameter and with a PDI <0.2. All the CPPs had a positive effect on size 
and PDI but the percentage of F127 negatively influenced the ZP. The 
authors circumscribed the most suitable experimental space and pre-
pared two optimized NPs batches, each one using a single different 
surfactant. The optimized formulations showed a desirable small size 
and PDI, colloidal stability over 6 months, slow drug release, and crys-
talline structure. However, the authors gave no in vitro not in vivo evi-
dence of their biocompatibility or antitumor efficacy. 

Another work by Yacoub et al. [71] studied gelatin-PDLG polymer 
NPs prepared via emulsification to improve the retention of the arthritis 
medication piroxicam after intra-articular injection. The authors used a 
FFD considering as CPPs percentage of internal phase, percentage of 
gelatin and percentage of PDLG, and as CQAs particle size, PDI, mean 
dissolution time, the release rate constant, and the time needed for 
quarter and half of the drug payload to be released (T25% and T50%, 
respectively). The results showed that T25% was only positively influ-
enced by gelatin concentration. T50% was influenced positively by the 
percentage of internal phase. The release rate constant was increased 
also by higher gelatin and higher internal phase fraction, and PDI was 
positively influenced only by gelatin percentage. However, the effect of 
CPPs on NPs size was not significant. Based on this model, one optimal 
formulation was selected, demonstrating low viscosity, good inject-
ability and good in vivo efficacy in reducing cartilage erosion in arthritic 
rats. 

7.5. Emulsions and suspensions-based DDSs to improve drugs 
pharmacokinetics 

Several studies applying DoE focus on innovative way to formulate 
drugs as nanosuspensions or nanoemulsions with the aim of improving 
their bioavailability. Technically these systems are not DDSs by their 
traditional definition, that being particles encapsulating drugs and car-
rying them across biological barriers. However, these colloidal systems 
are still nano-sized and are still aimed at improving drugs pharmaco-
kinetics, often by enabling their crossing of biological barriers through 

alternative routes other than diffusion of cellular carriers, and therefore 
can still be considered nanovectors. 

Among these formulations, a study by Mohammady et al. [72] 
focused on increasing the solubility of the beta-blocker drug carvedilol 
(CAR), by formulating it as a nano-co-crystal, improving its apparent 
solubility and bioavailability. This formulation was prepared using a 
sonication-based solvent displacement method. The authors employed a 
CCD to optimize three CPPs: CAR concentration, concentration of 
conformer (tartaric acid, TA) in the organic solution, the concentration 
of poloxamer-188 in the aqueous phase, and the water: organic phase 
ratio. CAR and poloxamer concentration proved to positively influence 
the particle size, while increasing the water:acetone ratio and TA con-
centration decreased it. Of note, two factors’ interactions between CAR 
concentration and poloxamer concentration were also very relevant in 
defining the particles size. Two optimized formulations were selected 
from the screening to perform stability studies after lyophilization, 
proving that for both formulations a slow freezing protocol yielded a 
similar size to the original formulation. These optimized formulations 
also demonstrated very high CAR solubility suitable for the quick oral 
administration of CAR. 

Nanosuspensions allow to administer a high dose of drugs and ach-
ieve fast release through the large surface offered by small drug clusters. 
Shekhawat et al. [73] focused on the optimization of nanosuspension 
formulation process to improve the solubility and bioavailability of the 
anti-hypertensive drug eprosartan mesylate (EM) via nanoprecipitation. 
To perform this, the authors applied a FCCCD following an RSM and 
considered three main CPPs chosen after performing FMEA: concen-
tration of EM, concentration of the stabilizer (Soluplus®) and ultra-
sonication intensity. The main CQAs considered were the size and PDI of 
the particles forming the EM nanoemulsion. Intuitively, sonication 
amplitude reduced the particles size, while it had a small effect on the 
PDI. Similarly to other studies, increase in Soluplus® concentration 
gradually decreased both particles size and PDI and higher drug con-
centration resulted in larger size and PDI. After creating the RSM model, 
the optimized formulation with minimal size and PDI resulted to be 40% 
amplitude, 0.4% w/v of soluplus and 0.6% w/v of EM, with a size of 149 
± and PDI =0.278 ± 0.004, and very fast release and high solubility 
compared to the free drug. This nanosuspension also demonstrated 
improved permeability in synthetic membranes and ex vivo intestinal 
tissues, achieving higher blood concentration after oral administration 
in mice. 

Spray drying allows the formulation of NPs for multiple applications 
including pulmonary delivery. Munir et al. [74] optimized cationic 
RALA cell-penetrating peptide [75] functionalized DNA NPs as a dry 
powder to deliver DNA for pulmonary gene therapy prepared using 
spray-drying. The CPPs were mannitol concentration and inlet temper-
ature, while the selected CQAs were the process yield, moisture content, 
NPs size, ZP, and EE. Increased mannitol was the only factor influencing 
product yield. However, mannitol had a negative effect on DNA EE. All 
CPPs influenced particles size, with less mannitol causing an increase in 
NPs size. Conversely, lower temperature and mannitol concentration led 
to higher ZP values. Minimal moisture was achieved at highest tem-
perature and mannitol content. The optimized NPs had a temperature of 
50 ◦C, spray rate of 80%, and spray frequency of 110 kHz. All the NPs 
features were in good accordance with model predictions. These parti-
cles demonstrated good transfection efficacy on lung carcinoma A549 
cells at 2% and 3% mannitol concentration. 

Another work focused on spray-drying is offered by Wei et al [76] 
who optimized the conditions for the production of model drug hes-
peridin nanocrystals from wet nanosuspensions with the aim to improve 
its solubility. The authors employed a first screening design including as 
CPPs the inlet temperature and feeding rate of spray dryer and the 
protectant (PVP), and using a CQAs only the particles size. The screening 
relevealed that the amount of PVP protectant decreased particles size 
while temperature proportionally increased it. A second RSM design was 
created to minimize NPs size. The authors validated the method by 
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formulating nanocrystals using 5% (w/w) of PVP K25 and 18% (m/v) 
hesperidin nanosuspension, with an inlet temperature of 100 ◦C. These 
nanocrystals showed a crystalline structure with a small size (250 nm) 
and low PDI, high hesperidin solubility and faster release rate compared 
to the non-spray dried nanosuspensions. However, the authors did not 
give much information on the designs they used. 

Traditional technologies have still been applied successfully to the 
formulation of these colloidal DDSs . For instance, Gieszinger et al. [77] 
produced PVA-stabilized NPs containing the antiepileptic drug lamo-
trigine (LAM) prepared by dry milling for nasal administration. The 
authors generated a FFD selecting as CPPs the milling time, milling 
speed, and the PVA:LAM ratio. The CQAs defined were NPs size and PDI, 
and the percentage of dissolved LAM from the samples after 5 and 
10min. These CQAs were defined according to the ICH Q8 guidelines for 
this specific pharmaceutical application, establishing a very well- 
defined QTPP. As discussed for similar processes, increasing milling 
time and speed decreased the NPs size and PDI. On the contrary, 
increasing these parameters also increased the release rate due to higher 
surface exposed by smaller particles, and increasing the PVA:LAM ratio 
also increased slightly the release rate. The authors applied a Monte 
Carlo simulation to select a small design space range and selected seven 
lead formulations, prepared progressively at lower levels of predicted 
robustness. All the NPs presented suitable size but only the most robust 
formulation had a very fast release, releasing all the drug after 10 min. 

Another example is offered by Gajera et al. [78], who focused on the 
DoE-based optimization of a dried extrusion process to formulate 
cellulose-based nanosuspensions, aiming to improve the solubility and 
release profile of the antimycotic drug clotrimazole. The studies CPPs 
were the system inlet temperature, the feed rate, and the screw speed. 
The CQAs were the particles PDI and the moisture content, both to be 
minimized. The authors employed a BDD, revealing that higher tem-
perature reduced the moisture content, while increased feed rate 
increased it. On the other hand, both higher temperature and feed rate 
increased the PDI. The authors formulated thus a desirability function 
and optimized the extrusion conditions using a temperature of 125 ◦C, a 
screw speed of 186 rpm, and a feed rate of 2.5 mL/min, with the opti-
mized formulation in good agreement with model’s prediction and 
showing a highly increased drug solubility and faster release in water 
and PBS. 

Self-nano emulsifying drugs delivery systems (SNEDDSs) allow to 
improve the solubility and the absorption of hydrophobic drugs thanks 
to the high surface provided by small oil emulsified droplets [79]. A 
recent work by Shailendrakumar et al. [80] optimized a SNEDDS to 
increase the oral availability of pentoxifylline (PTX), a drug used for the 
treatment of intermittent claudication. In this case, the authors focused 
on the use of a MD to optimize the proportions of the self-emulsifying 
system components: namely, the oil (palm oil), the surfactant (Cap-
mul® MCM), and co-surfactant (Tween 80). The design elucidated how 
it was intuitively possible to significantly reduce the size of the emul-
sified NPs by decreasing the amount of oil and increasing the pro-
portions of surfactant and co-surfactant. This optimization resulted in 
130 nm size, stable droplets with a slow release, and improved oral in 
vivo bioavailability in mice. 

Another work from Schmied et al. [81] focused on the optimization 
of a SNEDDS of different poorly soluble drugs (celecoxib and fenofi-
brate). The authors applied a MD to establish a center point for the 
mixture of surfactant (Tween 80), oil phase (Mygliol 812), and cosolvent 
(Gelucire 44). From the center point the authors created an array of 
formulations equidistant from the center and organized as hexagon. The 
selected CQAs cutoffs were: droplet size < 50 nm, a PDI < 0.15, and a 
transmittance > 99% after dispersing the SNEDDS in water. After per-
forming the first screening for each formulation, the authors manually 
circumscribed a smaller design space for further optimization, in some 
instances going slightly beyond the original design space. Statistical 
analysis revealed a complex profile of CPPs influence in all CQAs, 
including interactions and quadratic effects. In the case of celecoxib, 

increasing Gelucire 44 decreased transmittance and emulsification 
grade. Mygliol 812 increased particles size and emulsification grade but 
had a more complex effect on the transmittance. On the other hand, 
Tween 80 concentration decreased particles concentration, increased 
transmittance, and decreased emulsification grade. Fenofibrate had a 
simpler profile, with higher Tween 80 decreasing particles size emulsi-
fication grade, and increasing transmittance. Increase in Mygliol 812 
instead only caused a drop-in transmittance at high concentrations. The 
optimized SNEDDSs showed indeed suitable features and very quick 
drug release. However, the authors did not provide any evidence of in 
vivo bioavailability. 

Nanoemulsions can also be used as DDSs for biological cargoes. For 
instance, Kramer et al. [82] focused on the optimization of a lyophilized 
nanoemulsion vaccine against mycobacterium tuberculosis. The authors 
first screened several potential excipients compatible with the tuber-
culosis MTB ID-93 antigen. After selecting few of them, the authors 
decided to employ three separate and parallel DoE approaches with 
different CPPs and CQAs. This strategy was chosen to reduce the overall 
experimental runs number. However, this choice appears to be not very 
efficient. Specifically, performing uncorrelated DoE screenings gave 
contrasting information about the most relevant CPPs and led to an in-
crease in the number of potential lead formulations. It is unclear why the 
authors did not perform a more traditional low-resolution large 
screening including all the factors and screen the irrelevant ones out 
before performing a higher resolution design for optimization. In this 
way the data presented appears very fragmented and it is very difficult 
to gain a complete understanding of the process. Still, the authors were 
able to demonstrate that the candidate formulations were more stable 
than the liquid commercial vaccine formulation, retaining the same 
antigenicity but with longer antigen and colloidal stability in acceler-
ated storage studies. 

8. Conclusions: current limitations and future directions of DoE 
application in drug delivery 

In this article, we gave overview of the main concepts of DoE and 
offered examples of the latest applications of DoE to nanovectors used 
for drug delivery. However, we would like to underline some of the more 
general shortcomings that affect many studies, to give a more critical 
understanding of DoE and point to new potential directions for 
improvement. 

Firstly, in many cases the process that is being studied is not dis-
cussed extensively. When setting up a DoE for either screening and 
optimization, it can be very useful to contextualize the CPPs in study by 
presenting the entirety of the process as a cause-and-effect diagram, and 
by performing risk assessment on all the factors that are involved, 
stressing the decision-making process justifying why some CPPs have 
been selected over others. A good example of this is the previously 
discussed study by Shekhawat et al. [73], who applied the previously 
discussed FMEA approach. 

Another limitation often found among these studies is the lack of 
information regarding the selected designs. Only seldomly the authors 
discuss the resolution of the design, its confounding proprieties, 
orthogonality of CPPs, number of replicates runs or replicate screenings, 
or the optimality of the design. This lackluster definition of the design 
makes difficult to understand the validity of the results, and should be 
more often included in supporting material. 

Furthermore, in most of the studies presented in this article, the 
number of experimental runs is limited to 15–20 runs per design. Such a 
low number of runs can limit the amount of information given by DoE. 
This is often caused by the intricacy of NPs production, and by the costs 
in terms of materials, time, and workforce. However, the practical lim-
itations in NPs formulations could be overcome by using small-scale, 
high throughput techniques, including combinatorial screening ap-
proaches that allow to create tens of formulations in a short time, often 
through automation, or the use of commercially available instruments 
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specifically design for screening purposes. The combination of these 
techniques and DoE could potentially unlock an unprecedented amount 
of information on many different processes of NPs formulations. One 
such example is offered by Fan et al. [83] who used a robotic liquid 
handling solvent injection approach to prepare small volume of LNPs to 
deliver antisense oligonucleotides. This system allows to prepare hun-
dreds of formulations per hour, and thus could exponentially increase 
the power of DoE-based screenings and optimization studies since allows 
to overcome the bottle neck posed by the experimental runs limit. In 
particular, this study used different N/P ratios, different overall lipid 
concentrations, and different PEG-lipid concentrations, with two sepa-
rate ionizable and cationic lipids (MC3 and DOPTAP, respectively). The 
authors demonstrated how increasing PEGylated lipid proportion 
reduced particles size but increased their PDI, and to have EE above 80% 
it was necessary to have an N/P ratio above 1. This method demon-
strated to be scalable to higher volumes, enabling the large-scale testing 
of lead formulations. 

DoE allows us to investigate much more in-depth correlations be-
tween the experimental factors and the results. This is true especially for 
complex two or higher factors interactions. However, DoE does not 
provide per se any mechanistic information on what happens within the 
process. Thus, the uncovering of unexpected new correlations influ-
encing the process in study via DoE could prime the investigation of the 
potential mechanisms underlying these correlations. Despite DoE strict 
mathematical rationale, it could be still potentially employed as a novel 
tool for mechanism discovery. DoE can also be applied in conjunction 
with machine learning and neural networks. These advanced data 
analysis approach allow to analyze systematically very large amounts of 
data in the literature [84]. This would allow the authors to understand 
which variables have already been widely investigated and which have 
not been analyzed as much or at all. This wider scope could unlock the 
analysis of unprecedented combinations of CPPs, potentially uncovering 
new interactions. Neural networks are also a tool to create more complex 
and accurate perdition models to interpolate DoE results [32] and 
relevant research effort is being undertaken in further applying intelli-
gence to DDSs design [85]. 

Another important aspect observed in the reviewed literature is the 
application in many instances of DoE as a stand-alone strategy for var-
iables screening and process optimization. However, in most cases the 
authors do not focus on a direct comparison with the state of the art. This 
juxtaposition could be applied to different stages of the design: the gold 
standard can be used as a starting point to create a design space around it 
to explore, to see if it can be improved upon, and at the same time using 
it as a center point in the design itself. On the other hand, the gold 
standard can be also used as a cutoff for optimization, allowing to 
specify the boundaries or the minimal acceptable performance that the 
new optimized formulations must surpass to be considered. 

Perhaps the most critical limitation observed in many of the studies 
reviewed above is the limited relevance of the results by the small scope 
of the selected CQAs. Many studies perform screening and optimization 
of a nanoplatform based exclusively on its physical attributes (Size, PDI, 
Zeta potential, Loading efficiency, release profile) or very limited bio-
logical evidence (in vitro studies on cell cultures). However, all these 
results and models correlate poorly with in vivo models. Thus, the rele-
vance of a DoE-based studies could greatly benefit by adding more 
extensive in vitro readings such as nanoparticles uptake, or by using 
experimental models with better predictive profile. Furthermore, the 
inclusion of in vivo models for NPs absorption, biodistribution or tar-
geting could greatly improve the impact of the study’s results and could 
also be a source of unexpected correlations between CPPs and the bio-
logical behavior of NPs, prompting new insights as discussed above. A 
good example discussed above was given by Blakney et al [52], who 
utilized human skin explants models, providing very high translational 
potential to their work. Furthermore, the application of DoE so far has 
focused mostly on the optimization of NPs features to improve their 
efficacy. However, only a very small amount of works investigated on 

the toxicological effects of NPs. Including more biocompatibility and 
safety CQAs could substantially increase the amount of information 
extracted from DoE-based studies. 

Of note, many of the discussed studies also employ natural and 
naturally derived materials (e.g. chitosan, gelatin, alginate, amniotic 
fluid) [27,31,48] to prepare NPs. However, natural materials are often 
affected by intrinsic inter-batch variability caused by their composition 
and techniques of purification. Thus, including different material lots as 
NFs could highlight the relevance of batch-to-batch variability in the 
screening and optimization of DDSs. This issue is especially relevant in a 
perspective of process scaling up and robustness. 

Finally, the majority of the cited study focus only on the small-scale 
production of DSS, but it would be of great relevance to also validate the 
findings of DoE by performing scaling up of the process, making the 
findings more relevant from a large-scale production perspective. The 
study from Nag et al. [45] is a good example of this approach. 

In conclusion, we believe that the wide range of different processes 
analyzed and optimized using DoE is a testimony of the versatility of this 
strategy and these successes could prime the further expansion of its 
employment on new nanomaterials and DDSs. 
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