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a b s t r a c t

Delivery of nucleic acids with positively charged lipid nanoparticles ((þ)NPs) is widely used as research
reagents and potentially for therapeutics due to their ability to deliver nucleic acids into the cell cyto-
plasm. However, in most reports little attention has been made to their toxic effects. In the present study,
we performed comprehensive analyses of the potential toxicity associated with (þ)NPs. Mice treated
with (þ)NPs showed increased liver enzyme release and body weight loss compared to mice treated with
neutral or negatively charged NPs ((�)NPs), suggesting hepatotoxicity. Intravenous administration of (þ)
NPs induced interferon type I response and elevated mRNA levels of interferon responsive genes 15e25-
fold higher than neutral and (�)NPs in different subsets of leukocytes. Moreover, treatment with (þ)NPs
provoked a dramatic pro-inflammatory response by inducing Th1 cytokines expression (IL-2, IFN g and
TNF a) 10e75-fold higher than treatment with control particles. Finally, we showed that activation of
TLR4 might serve as the underlying mechanism for induction of an immune response when (þ)NPs are
used. These results suggest that a careful attention must be made when different types of (þ)NPs are
being developed as nanotherapeutics.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Non-viral gene delivery vectors are biomaterials, which are often
based on cationic components [1]. The nature, shape and charge of
the biomaterials affect the interaction with the immune system.
Several studies laid the foundation of investigating the immune
response when developing novel biomaterials for gene transfer and
those focused mainly on lymphocytes and complement activation
[2,3] or examine global cell counts of subtypes of leukocytes when
injecting novel formulations into animal models [4e6].

Tremendous efforts to develop carriers for nucleic acids delivery
are made since the discovery of RNA interference (RNAi) in 1998 [7]
and the application of small interfering RNAs (siRNAs) in
mammalian cells in 2001 [8]. RNAi has emerged as a powerful tool
for elucidating gene function, identifying novel drug targets and
potentially utilizing it for therapeutic intervention [9,10]. The work
by Kleinman et al. [11] demonstrated that siRNAs can activate the
innate immunity via endothelial Toll-like receptor 3 (TLR3). This
nd Nanotechnology, Tel Aviv
5.
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work emphasized the importance of understanding siRNA non-
specific toxicity and directedmajor efforts to this task. Indeed, it has
been revealed that siRNA are potent activators of the mammalian
innate immunity, inducing inflammatory cytokines and interferon
response mainly through RNA-sensing TLRs (TLR 3, 7 and 8) [12,13].
To overcome this hurdle, several chemical modifications and
sequence preferences were developed successfully [14e16].

Due to several characteristics of siRNA such as its relatively large
size (w14 kDa), its negative charge (w40 charge units/siRNA
molecule) that cause poor cellular uptake and its susceptibility to
enzymatic degradation in vivo, therapeutic applications of RNAi are
heavily dependent on the development of appropriate carriers that
can provide protection and transport the RNAi payload into cells of
interest. Currently the rate-limiting factor in therapeutic RNAi is
development of safe and efficient delivery vehicles. To this end,
a variety of carriers utilizing both natural and synthetic materials
have been developed [2,17e19]. Cationic lipids in general and
DOTAP lipid in particular stand for one of the most well studied
carriers for RNAi delivery. Positively charged nanoparticles ((þ)
NPs) composed of cationic lipids posses the ability to bind and
condense siRNA through electrostatic interactions and to deliver
the payload across the cellular membrane into the cytoplasm of
target cells [20]. Although siRNA off-target effects have beenwidely
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studied, understanding the carrier side effects and toxicity is crucial
and it is less characterized at the immune cellular level.

Herein, we report the analyses of the potential toxicity associ-
ated with positively charged NPs at the cellular level and propose
the underlying mechanism.

2. Materials and methods

2.1. Materials

High-purity hydrogenated soy phosphatidylcholine (HSPC), and 1,2-dis-
tearoylphosphatidylglycerol (DSPG) were a kind gift from Lipoid GmbH (Ludwig-
shafen, Germany). Cholesterol (Chol) and 1,2-dioleoyl-3-trimethylammonium-
propane (DOTAP) were purchased from Avanti Polar lipids Inc. (Alabaster, AL, USA).
Cell culture plates and dishes were from Corning Glass Works (New York, NY, USA).
Polycarbonate membranes were from Nucleopore (Pleasanton, CA, USA). Total RNAs
were extracted with the RNeasy mini kit from Qiagen (Valencia, CA, USA) and
reverse-transcribed by Superscript III from Invitrogen (Carlsbad, CA, USA). LPS was
purchased from SigmaeAldrich (St. Louis, MO, USA). Primers for quantitative RT-PCR
were obtained from Syntheza Inc. (Rehovot, Israel). All other reagents were of
analytical grade.

2.2. Preparation of nanoparticles

Lipid-based nanoparticles were prepared as previously described, without
surfacemodification [2,21]. Three types ofNPswereprepared: neutral in charge (NPs)
composed of HSPC and Chol at 4:1 mol ratio; negatively charged [(�)NPs] composed
of HSPC:Chol:DSPG at 3:1:1 mol ratio; and positively charged [(þ)NPs] composed of
HSPC:Chol:DOTAP at 3:1:1 mol ratio. Briefly, multilamellar vesicles (MLV) were
prepared by a lipid-film method and evaporated to dryness using a buchi-rotovap
[2,21]. The lipid film was hydrated with Phosphate-buffered saline pH 7.4 to create
MLV. Lipid mass was measured as previously described [2]. Resulting MLV were
extruded into small unilamellar nano-scale vesicles (SUV)with a Thermobarrel Lipex
extruder� (Lipex biomembranes Inc., Vancouver, British Columbia, Canada) at 60 �C
under nitrogenpressures of 300e550 psi. The extrusionwas carried out in a stepwise
manner using progressively decreasing pore-sized membranes (from 1, 0.8, 0.6, 0.4,
0.2, to 0.1 mm) (Nucleopore,Whatman), with 10 cycles per pore-size. NPs, (�)NPs and
(þ)NPs were stored at 4 �C until further use and not more than 2 weeks.

2.3. Entrapment of siRNAs in (þ)NPs

siRNAs entrapment was done similar to the one reported in [6]. Briefly, the lipids
were dissolved in chloroform:methanol (4:1, v/v). The organic solvent was evapo-
rated under pressure at 60 �C for 30min and the lipid filmwas flushedwith N2 gas to
remove residual solvent. The lipid film was hydrated using a solution of siRNAs
(Luciferase) with previously described sequence [2] in 5% dextrose (w/v) prepared
using RNase-free dH2O. Size reductionwas performed as with conventional particles
(see Section 2.2). siRNAs amounts that were entrapped were assayed by the Ribo-
Green assay (invitrogen) as previously described [2].

2.4. Particle size distribution and zeta potential measurements

Particle size distribution and mean diameter of NPs, (�)NPs, (þ)NPs and siRNAs
entrapped in (þ)NPs were measured on a Malvern Zetasizer Nano ZS zeta potential
and dynamic light scattering instrument (Malvern Instruments, Southborough, MA)
using the automatic algorithm mode and analyzed with the PCS 1.32a. All
measurements were done in 0.01 mol/l NaCl, pH 6.7, at room temperature.

2.5. Animal care and treatment

Animals (healthy C57BL/6 mice) were obtained from the animal-breeding
center, Tel-Aviv University (Tel Aviv, Israel). Animals were maintained and treated
according to National Institutes of Health guidelines. All animal protocols were
approved by the Tel-Aviv Institutional Animal Care and Use Committee.

2.6. Blood biomarkers assays

Healthy C57BL/6 mice (n ¼ 5/group) were given a single bolus intravenous (i.v.)
injections of saline, or treated with NPs, (�)NPs or (þ)NPs at a lipid concentration of
10mg/kgbody/mouse. 4hor24hpost initial injection, bloodwasdrawnand the serum
was obtained by centrifugation of the whole blood at 850g for 15 min. Liver enzyme
levels of Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST) and
Alkaline Phosphatase (ALP) were determined by COBAS MIRA auto analyzer (Roche).

2.7. Bodyweight measurements

Healthy C57BL/6 mice (n ¼ 5/group) were given bolus i.v. injections of saline, or
treatedwith NPs, (�)NPs or (þ)NPs twiceweekly for 3 weeks (overall 6 doses/mouse
of 10 mg/kg body/dose/mouse) and individual mouse bodyweight was monitored
every 3 days using an Avery Berkel scale (Fairmont, MN, USA).

2.8. Splenocytes isolation and cell sorting

Healthy C57BL/6 mice were used for harvesting splenocytes. In some experi-
ments C57BL/6 mice injected with saline, NPs, (�)NPs or (þ)NPs (2 or 24 h post i.v.
injection) were harvested. Isolation of splenocytes (1 � 108 splenocytes/mouse)
from C57BL/6 wild-type (WT) or splenocytes from C57BL/10ScNJ-Tlr4lps-del (TLR4�/

� mice) (a kind gift from Dr. G. Nussbaum, Hebrew University, Jerusalem, Israel) was
preformed as previously described [2,22,23]. For cell sorting, 5 � 107 cells (range
1e10 � 107) were used. Cells were incubated with anti-mouse CD11b-Alexa700
(clone M1/70 e expressed on granulocytes, monocytes, macrophages, myeloid-
derived dendritic cells, and natural killer cells), anti-mouse CD3e-Alexa488 (clone:
145-2C11, T cells), and anti-mouse B220-PE-Cy5 (clone: RA3-6B2, B cells) all from BD
Pharmingen (San Jose, CA, USA). Antibodies diluted in PBS and stained for 30 min at
4 �C. Rat IgG2b-Alexa700, Armenian Hamster IgG1-Alex488, and Rat IgG2a-PE-Cy5
diluted in PBS were used as matched isotype controls. Cells were washed with PBS
twice and suspended in PBS- 2 mM EDTA. 7AAD was added to stain dead cells. Cell
sorting was performed with a FACSAria cell sorter (BD Biosciences, San Jose, CA,
USA) equippedwith blue, red, and violet lasers. Dead cells were excluded by 7AAD vs
forward scatter (FSC) dot plots. Doublets were excluded from the cell population by
side scatter (SSC)-W vs SSC-H and FSC-W vs FSC-H dot plots. Finally, bright CD11bþ,
CD3þ and B220þ cells were selected and sorted using the cell sorter’s purity option
at a rate of 5000 events per second. Sorted populations were reanalyzed for purity
and viability, and 1 � 106 cells of each population was collected into Eppendorff
tubes and was treated with various NP formulations and then subjected to RNA
extraction for further analysis of interferon (IFN) response analysis and cytokine
induction. Alternatively, mice (n¼ 5/group) treatedwith saline, NPs, (�)NPs, and (þ)
NPs formulations as listed in Figs. 3 and 4, were collated into Eppendorff tubes with
RNA extracting buffer using the RNeasy isolation kit from QIAGEN (Valencia, CA,
USA) for IFN analysis and cytokine induction.

2.9. Interferon and cytokine induction assays

Mice splenocytes were isolated from the spleen as previously described
[2,22,23]. Expression of interferon responsive genes (IRG) and cytokines were
examined by quantitative RT-PCR. mRNA levels of IRG, as well as a panel of cytokines
were quantified either after splenocytes were sorted for monocytes, T cells and B
cells and mock-treated or treated with NPs, (�)NPs, (þ)NPs and siRNAs entrapped in
(þ)NPs or upon intravenous administration of saline, NPs, (�)NPs or (þ)NPs at
10 mg/kg body into C57BL/6 mice. LPS (100 ng/mL) was used as a positive control.

2.10. Quantitative RT-PCR

Quantitative RT-PCR using a Step one Plus Real time RT-PCR (ABI) was carried
out as previously described [2]. RNA was extracted from the cells using RNeasy kit
(Qiagen). Total RNA (1 mg) was reverse transcribed into cDNA using Superscript III
from Invitrogen in a 25 mL reactions. GAPDH served as endogens control. Primers for
mouse GAPDH, STAT1, OAS1, IFN-b, IL-2, TNF a, and IFN g, were as previously
described [2]. The following primer pairs were used:

IL-6 primers: forward primer: 50-ATCCAGTTGCCTTCTTGGGACTGA-30; reverse
primer: 50-TAAGCCTCCGACTTGTGAAGTGGT-30 .
IL-13 primers: forward primer: 50-CTGTGAGCCTTGTCCTCCTC-30; reverse
primer: 50-TTGGTGAGCCAGTGAGACG-30 .
IL-17 primers: forward primer: 50-CATGCAGGAGGTGGTACCTT-30; reverse
primer: 50-AGCTTCTTCTCGCTCAGACG-30 .
MX1 primers: forward primer: 50-GAATAGCAACTCCATACCGTG-30; reverse
primer: 50-GTATTAAAGGTTGCTGCTAATG-30 .
G1P2 primers: forward primer: 50-GTGGTGCAGAACTGCATCTC-30; reverse
primer: 50-GCCAGAACTGGTCTGCTTGT-30 .
2.11. Statistical analysis

In vitro data were analyzed using Student’s t-test. Differences between treat-
ment groups were evaluated by one-way ANOVA with significance determined by
Bonferroni adjusted t-tests.

3. Results

3.1. Particle size distribution and surface charge measurements

To investigate whether surface charged NPs induce toxic effects
and immune activation systemically, we prepared three types of
NPs differing in their surface charge, namely anionic, cationic and



Table 1
Hydrodynamic diameter and zeta potential measurements of neutral, positively and
negatively charged NPs.

NPs type NPs lipid composition
(mole ratio)

Hydrodynamic
diameter (nm)

z potential
(mV)

NPs HSPC:Chol (4:1) 100 � 18 �8.5 � 2.4
(�)NPs HSPC:Chol:DSPG (3:1:1) 104 � 10 �59.2 � 4.9
(þ)NPs HSPC:Chol:DOTAP (3:1:1) 107 � 14 þ54.3 � 6.1
(þ)NPs HSPC:Chol:DOTAP:

siRNAs (3:1:1:0.5)
223 � 21 þ38.1 � 4.0

Each result is an average (�standard deviation) of 6 independent measurements.
Particles were measured at pH 6.7, in ddH2O with 10 mM NaCl, at 20 �C using
a Malvern ZS Zetasizer.
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neutral in charge NPs. All NPs were composed of HSPC and
cholesterol, which form the basic lipid nanoparticle structure,
while positively charged nanoparticles [(þ)NPs] and negatively
charged NPs [(�)NPs] were composed with the addition of DOTAP
or DSPG, respectively. The quaternary ammonium head group in
the DOTAP lipid contributed a positive charge to the NPs, while
addition of DSPG with its orthophosphate head group donated
a negative charge to the NPs. Dynamic light scattering (DLS) and
surface charge (zeta potential) measurements were used to char-
acterize and validate the NPs hydrodynamic diameter and charge of
all three NPs types. As shown in Table 1, the average NPs size was in
the range of 100 nm in diameter for all formulations with a narrow
size distribution as evident by the small standard deviation values.
siRNAs entrapped in the positively charged NPs increased their size
toe220 nm in diameter. NPs composed from HSPC and cholesterol
had a zeta potential of �8.5 mV confirming their neutral charge at
the measured pH. An addition of 20% mole of DSPG to the formu-
lation changed the charge of the particles to negative (w�60 mV),
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Fig. 1. Positively charged nanoparticles induce systemic toxicity in vivo. A. Serum levels of
alkaline phosphatase (ALP) in C57BL/6 mice, 4 and 24 h post i.v. administration of 10 mg
mean � SEM, (n ¼ 5/group). B. Changes in bodyweight. C57BL/6 mice after i.v. injections of
are expressed as mean � SEM, (n ¼ 5/group), *p < 0.01; **p < 0.001 vs mock-treated.
while adding 20% mole DOTAP turn the particles into positively
charged (þ54 mV). Entrapment of siRNAs within (þ)NPs neutral-
ized some of the surface charge and reduced it toe(þ38 mV).

3.2. Positively charged NPs induce systemic toxicity in vivo

To examine the carriers’ potential to induce systemic toxicity,
we tested two global toxicity markers [2,24]: serum liver enzymes
and body weight loss upon multiple injections.

High release of liver enzymes measured in the serum is
considered an indication of hepatotoxicity [24]. Serum levels of the
liver enzymes, alanine aminotransferase (ALT), aspartate amino-
transferase (AST), and alkaline phosphatase (ALP) were determined
in healthy C57BL/6mice (n¼ 5/group) i.v. administratedwith saline
or with 10 mg/kg body NPs, (�)NPs or (þ)NPs and at 2 time points
(4 and 24 h post i.v. injection), blood was drawn to assess potential
hepatotoxicity. This dose of 10 mg/kg body lipid NPs is at the low
end of doses reported for lipid-based NPs [6,25]. While NPs and (�)
NPs induced only mild changes in liver enzymes release that are
considered well-tolerated [24] (Fig. 1A), administration of (þ)NPs
significantly enhanced liver enzymes release even after 4 h post
injection and more robustly (3e6-fold higher than the mock-
treated mice) 24 h post administration, indicating possible liver
toxicity.

Changes in body weight are also considered a global toxicity
marker [2]. To determine the changes in bodyweight, 8 weeks-old
C57BL/6 healthymice (n¼ 5/group) were i.v. injectedwith a dose of
10 mg/kg body NPs, (�)NPs, (þ)NPs, or saline (mock-treatment),
twice a week for 3 weeks. Changes in bodyweight were followed
over a period of 27 days. NPs- and (�)NPs-treated mice did not
decrease their bodyweight, however, their growth rate was smaller
s (-)NPs (+)NPs

08 ± 19 97 ± 12 102 ± 21 347 ± 31

74 ± 23 129 ± 18 156 ± 27 223 ± 21 694 ± 54

28 ± 21 97 ± 8 103 ± 10 156 ± 23 276 ± 22

66 ± 8

30

Mock treated
NPs treated
(-) NPs treated
(+) NPs treated

24h 4h 24h 4h 24h

* p < 0.01

** p < 0.001

liver enzymes. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and
/kg body NPs, (�)NPs, (þ)NPs or saline (mock). Values expressed in units per liter as
10 mg/kg body NPs, (�)NPs, (þ)NPs, or saline (mock) twice a week for 3 weeks. Values
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Fig. 2. Positively charged nanoparticles induce an inflammatory response in vivo. mRNA expression of cytokines and interferon responsive genes (IRG) in splenocytes harvested
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than the mock-treated mice implying potential toxicity upon
multiple injections (Fig. 1B). Mice treated with (þ)NPs lost body-
weight (w5.5% at day 27) confirming possible hepatotoxicity that
correlates with the high serum liver enzyme levels.

3.3. Positively charged NPs induce pro-inflammatory response in
vivo

Induction of pro-inflammatory cytokines and interferon
responsive genes (IRG) can cause opposite trends such as hyper
immune activation or global immune suppression (depending on
various environmental conditions) and are usually not well defined
when developing nanocarriers for various applications [2,10]. To
determine whether intravenous administration of NPs induce pro-
inflammatory cytokines and IRG expression, mice (n ¼ 4/group)
were mock-treated with saline or administrated with NPs, (�) NPs
and (þ)NPs. Splenocytes were harvested 2 and 24 h post systemic
administration andmRNA of selected cytokines and IRG genes were
measured using quantitative RT-PCR (qPCR). High induction in Th1
cytokines (IL-2, IFN g, TNF a) and in Th17 cytokines (IL-17, and IL-6)
was observed 2 h post i.v. injection of (þ)NPs (Fig. 2A). This
induction in expression was 10e24-fold higher than observed
when NPs or (�)NPs were administered. There was almost no
detectable induction of Th1 cytokines from the NPs and (�)NPs 2 h
post i.v. injection, similar to mock-treated mice (Fig. 2A). A
substantial decrease in cytokine induction (2.6e10-fold lower than
expressed 2 h post administration) was observed 24 h post i.v.
administration of (þ)NPs (Fig. 2B) indicating a possible tolerance of
the leukocytes to this stress. The induction of cytokines 24 h post
administration of NPs and (�)NPs was as low as the mock-treated
levels and on par with the cytokine induction observed 2 h post i.v.
injection, suggesting that the basal level of cytokine induction was
measured (Fig. 2B). Similar trend was observed when IRG expres-
sion was measured (Fig. 2C). High induction in IRG expression (15-
fold higher than that of NPs or (�)NPs) was observed 2 h post i.v.
injection of (þ)NPs (Fig. 2C). 24 h post injection IRG expressionwas
mildly reduced by 1.5e0.5-fold (Fig. 2D) suggesting a possible
immune tolerance to the stress caused by the (þ)NPs as seen in
cytokine induction (Fig. 2A,B).

3.4. Positively charged NPs activate the immune response directly
at the cellular level

Immune activation caused by delivery of (þ)NPs may be medi-
ated by their interaction with serum proteins, lipoproteins or
extracellular matrix or by toxic signals released from an injured
organ, such as the liver or spleen [26,27]. Alternatively, (þ)NPs may
interact directly with immune cells and lead to immune activation
[26]. To examine this question, primary T cells, B cells and mono-
cytes, were FACS sorted fromhealthy splenocytes andmock-treated
or incubatedwith NPs, (�)NPs, and (þ)NPs. 5 h post incubation, IRG
and a panel of cytokines expressionwas measured using qPCR. LPS,
is the primary component of the outermembrane of Gram-negative
bacteria, which is an inducer of TLR4. Binding of LPS toTLR4 triggers
various cell-signaling pathways, which lead to up-regulation of Th1
cytokines and interferon type I response [28,29]. Therefore, LPS was
used in these experiments as a positive control. Correlated with the
in-vivo experiments, induction of IRG expression was observed
only with (þ)NPs at 15e25-fold higher expression in all subtypes of
leukocytes (monocytes (CD11bþ), T cells (CD3þ) and B cells
(B220þ)) tested compared with NPs or (�)NPs treatment. The IRG
expression levels when (þ)NPs or LPS were used was similar
(Fig. 3A). This IRG induction occurred without the presence of any
potential mediator, thus immune response was elevated directly at
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the cellular level. Similar trend was observed when cytokines were
examined (Fig. 3B). All leukocytes subpopulations induced Th1
cytokines (IL-2, IFN g and TNF a) when treated with (þ)NPs at
10e75-fold higher than treatment with NPs or (�)NPs at different
levels (monocytes > T cells > B cells). Th1 induction was specific
since no increasing in IL-13 expression, a representative Th2 cyto-
kine, was observed (Fig. 3B). IL-17, a cytokine from the Th17 family
has been shown to play a crucial part in the induction of autoim-
mune diseases [30,31]. Substantial expression of IL-17 mRNA levels
in T cells and a mild expression in monocytes treated with (þ)NPs
(Fig. 3B) was observed. This may suppress some of the Th1 response
as a balance between Th1 and Th17 as previously demonstrated in
another setting [32].
3.5. Positively charged NPs activate the immune response through
Toll-like receptor 4 (TLR4)

TLR4 activation induce both pro-inflammatory cytokines and
type I interferon [28,33]. In addition, IL-13 is known to be
expressed upon TLR2 activation but not by TLR4 activation [34].
This has raised the hypothesis that (þ)NPs activate the TLR4
pathway. To test this hypothesis, primary TLR4�/� monocytes, T
cells, and B cells were mock-treated or incubated with NPs, (�)NPs
and (þ)NPs. Five hours post incubation cytokines and IRG
expression were measured using qPCR. The results demonstrate
that (þ)NPs operate in a TLR4 dependent manner since Th1
cytokines expression levels showed 60e75-fold decrease in
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Fig. 4. Positively charged nanoparticles do not activate pro-inflammatory response in TLR4�/� leukocytes. mRNA expression of immune responsive genes in primary monocytes,
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expression levels compared to WT leukocytes (Fig. 4A compare
with Fig. 3B) and had a very low expression level on par with LPS
(Fig. 4A). This pro-inflammatory response was dose dependent
(see Supplemental Fig. 1). Treatment with NPs or (�)NPs had no
change in cytokines expression levels when TL4�/� leukocytes
were used, and was on par with the wt leukocytes levels (Fig. 4A
compare with Fig. 3B). Similar trend was obtained when IRG
expression levels were examined (Fig. 4B). 17e25-fold decrease in
IRG expression levels were observed when (þ)NPs were incubated
with TL4�/� leukocytes compared with WT leukocytes (compare
Fig. 4B with Fig. 3A) and was similar to the decrease in IRG
expressionwhen LPS was used (Fig. 4B). Treatment with NPs or (�)
NPs did not induce any decrease in IRG expression, stringent the
conclusion that (þ)NPs activate TLR4.
3.6. Positively charged nanoparticles entrapping siRNAs activating
a pro-inflammatory response in a TLR4-dependent manner

Entrapment of siRNAs within (þ)NPs ((þ)NPs-siRNAs) changes
the physicochemical properties (see Table 1). To examine whether
they are representative for applications involving siRNAs delivery,
Pro-inflammatory cytokines and IRG of CD11bþ sorted cells were
profiled in response to this formulation. These cells were used as
model cells since they have shown the most profound induction of
cytokines and IRG (Fig. 3).

These results showed that administration of (þ)NPs-siRNAs
induced immune response by upregulating Th1 cytokines and IRG.
Comparedwith RNAi-free(þ)NPs, therewas a slight decrease inpro-
inflammatory cytokines expression. This might be due to the
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Fig. 5. Positively charged nanoparticles entrapping siRNAs activating a pro-inflammatory response in a TLR4 edependent manner. Primary monocytes (CD11bþ) isolated from TLR4
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entrapment of siRNAs in the (þ)NPswhich reduced thenet charge of
the particles from þ54 mV to þ38 mV (Table 1). However, no
decrease in IRG expressionwas observed. Thismaypoint to different
IRG induction pathways. Since the addition of siRNA is known to
induce immune response [11e13], CD11bþ sorted cells were incu-
bated with free siRNAs as a positive control. A dramatic stimulation
of Th1 cytokines and IRG was observed when free siRNAs, (þ)NPs
and (þ)NPs-siRNAs were incubated with CD11bþ cells (Fig. 5A and
C). To testwhether this inductionwasderived fromthenetpositively
charged NPs and not from the siRNAs, we incubated free siRNAs, (þ)
NPs and (þ)NPs-siRNAs with TLR4�/� CD11bþ sorted cells.

Immune induction was completely abolished in TLR4�/� cells
treated with (þ)NPs-siRNAs, while a profound effect of cytokine
and IRG induction was still observed in cells treated with free siR-
NAs (Fig. 5B and D).
4. Discussion

Here we have shown that systemic administration of positively
charged lipid nanoparticles ((þ)NPs) in vivo is toxic as showed by
several global indicators. Administration of (þ)NPs to mice induced
hepatotoxicity (as evident by high levels of serum liver enzymes) as
well as weight lose of 5.5% upon multiple injections. Moreover, at
the cellular level, (þ)NPs treatment stimulated inflammatory
response by elevating both Th1 and Th17 cytokines and IRG similar
to treatment with LPS.

Our experimental data, although correlated with other in-vivo
study showing inflammatory response in intratracheal administra-
tion [35], is not in agreement with the in vitro toxicity study by
Tanaka et al. that showed DOTAP liposomes up-regulate co-stimu-
latory molecules CD80 and CD86 but not pro-inflammatory
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cytokines in bone marrow dendritic cells [36]. This contradiction
may suggest that intravenous administration uses a mediator
componentnotexisting in cell culturemodel.However, basedonour
study, (þ)NPs stimulation is done directly at the cellular level as we
showed for B cells, T cells andmonocytes (including dendritic cells).
Another explanation for the inconsistency may rely on NPs
composition. In our system, (þ)NPs are composed of DOTAP,
cholesterol and phosphatidylcholine (PC), which are required for
NPs stability and for improvement of cellular uptake [37,38] and not
solely on DOTAP. It has been shown that an addition of PC as a co-
lipid to cationic liposomes effect inflammatory response as an
adjuvant [39].

In the present study we show that the induction of Th1 cyto-
kines by (þ)NPs is specific since no increase in the Th2 cytokine, IL-
13, is observed. This result suggests that the immune activation
might be via TLR4, since IL-13, unlike other cytokines, is specifically
induced by other TLRs activation and not TLR4 [34].

In addition, it has been shown that cationic liposomes admin-
istration reduced cell viability by elevating reactive oxygen species
(ROS) generation [40,41]. ROS elevation was shown to play an
important role in LPS-induced pro-inflammatory cytokines
production [42,43]. Furthermore, cells stimulation with LPS-
induced ROS production and NF-kB activation in a TLR4 dependent
manner [44]. Taking into account these results, it was reasonable to
assume that (þ)NPs induce toxicity through TLR4. Indeed by using
TLR4 knockout mice, we showed that (þ)NPs immune activation is
mainly TLR4 dependent, since (þ)NPs did not stimulate inflam-
matory response similar to the one that was observed by LPS.
Moreover, we showed that while both free siRNA and siRNAs
entrapped in (þ)NPs induced immune response in CD11bþ cells,
only free siRNA was able to induce pro-inflammatory response in
TLR4�/� CD11bþ. This provides a strong support for TLR4 depen-
dency in (þ)NPs-siRNAs toxicity and strengthens the under-
standing that (þ)NPs-siRNAs effect on pro-inflammatory response
is not due to the siRNA component, which elevates immune
response in a TLR4-independent manner, as suggested by previous
studies [11e13], but derived by the cationic component of (þ) NPs.

The understanding of DOTAP lipid-based NPs effects on leuko-
cytes is crucial for RNAi delivery strategies in general and specifi-
cally in their application in cancer and inflammation [45]. Cationic
NPs are being used in cancer therapy studies [46e48] and the
relation between inflammation, innate immunity and cancer is
widely investigated [49e51]. The involvement of the TLR family in
general and TLR4 specifically in cancer is actively studied [52,53].
The activation of TLR4 by LPS was shown to induce proliferation,
activation of NF-kB pathway and chemo-resistance in ovarian
cancer [29] as well as elevation of migration and invasion in both
colon cancer cells and pancreatic cancer cells [23]. These results
must be taken into account when considering applying (þ)NPs in
cancer therapy. Activation of TLR4 by (þ)NPs entrapping siRNAs
may lead to cancer promotion and progression as well as increase
angiogenesis. Therefore, other strategies that do not relay on
cationic components should be devised. Those will probably utilize
mechanisms of receptor-mediated endocytosis for internalization
of the RNAi payloads into specific cell types.

5. Conclusions

Here we investigated the toxic effect of positively charged lipid
nanoparticles in vivo. Under certain experimental conditions,
a formulation of DOTAP-based nanoparticles has induced systemic
toxicity, Th1 cytokines expression and activated a type I interferon
response. We found that these cationic nanoparticles activate toll-
like receptor 4 expressed on leukocytes in a specific manner. This
study lays the foundation for evaluating different types of
nanoparticles and their immune toxicity that may impact the
development of cationic nanocarriers as delivery systems for
nucleic acids in general and RNAi in particular.
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