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RNAi-based therapy holds great promise, as it can be utilized
for the treatment of multiple conditions in an accurate manner
via sequence-specific manipulation of gene expression. To date,
RNAi therapeutics have advanced into clinical trials for liver
diseases and solid tumors; however, delivery of RNAi to leuko-
cytes in general and to lymphocytes in particular remains a
challenge. Lymphocytes are notoriously hard to transduce
with RNAi payloads and are disseminated throughout the
body, often located in deep tissues; therefore, developing an
efficient systemic delivery system directed to lymphocytes is
not a trivial task. Successful manipulation of lymphocyte func-
tion with RNAi possesses immense therapeutic potential, as it
will enable researchers to resolve lymphocyte-implicated dis-
eases such as inflammation, autoimmunity, transplant rejec-
tion, viral infections, and blood cancers. This potential has
propelled the development of novel targeted delivery systems
relying on the accumulating research knowledge from multi-
ple disciplines, including materials science and engineering,
immunology, and genetics. Here, we will discuss the recent
progress in non-viral delivery strategies of RNAi payloads to
lymphocytes. Special emphasis will be made on the challenges
and potential opportunities in manipulating lymphocyte func-
tion with RNAi. These approaches might ultimately become a
novel therapeutic modality to treat leukocyte-related diseases.

Lymphocytes, the main component of the adaptive immune system,
mediate inducible and long-lasting immune responses against patho-
gens. Lymphocytes include natural killer (NK) cells, T lymphocytes,
and B lymphocytes, which are characterized by the expression of
different surface molecules and antigen receptors. Lymphocytes are
produced in the bone marrow and are the major cell type in the
lymphoid system. They recirculate between the blood and lymphatic
systems to invade and target damaged tissues and tumor cells upon
appropriate signals.1 Lymphocytes can be divided into innate and
adaptive immune cells, which differ in both specificity and function.
While adaptive lymphocytes can respond to a significantly higher
number of antigens in comparison to innate lymphocytes, the
response is slower due to its multi-step nature. Long-lasting immu-
nity is achieved by activation of the adaptive B and T lymphocytes
and results in expansion of reactive cells that transform into effector
plasma cells and activated T lymphocytes. The latter eliminates path-
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ogens and facilitates secondary immune responses upon becoming
memory cells.1

Lymphocytes are associated with the pathogenesis of autoimmune
diseases, allergies, graft versus host disease, inflammation, lympho-
tropic viral infection (e.g., HIV), and cancer.2,3 For example, the entry
of HIV is mediated by a specific subset of T lymphocytes. In addition,
successful modulation of T lymphocytes is required to overcome the
immunosuppressive properties of the tumor microenvironment that
utilize the expression of immune checkpoint molecules to escape im-
mune surveillance.4 Therefore, selective gene silencing in lympho-
cytes using RNAi is not only a great tool for understanding lympho-
cyte biology, but it could also have attractive therapeutic potential.5,6

Since the first successful application of RNAi in mammalian cells,
RNAi has become an important tool in understanding gene expres-
sion and function in many cell types.7 The main advantage of
RNAi is that it allows for robust silencing of potentially any gene of
interest with high specificity and selectivity. This includes “undrug-
gable” targets, which are uniquely expressed by different types of
translocated genes, overexpressed genes, as well as mutated genes.8

Therefore, RNAi-based drugs may represent the future molec-
ular medicine of targeted therapeutics for lymphocyte-implicated
diseases.
Hurdles in Directed Gene Silencing of Lymphocytes

Despite its promise, RNAi therapy is not a trivial task, especially when
targeting lymphocytes.9,10 In part, this is due to the nature of RNAi
molecules; their large molecular weight, negative charge, and hydro-
philicity hinder naked RNAi molecules in crossing the plasma mem-
brane. Additional barriers include the instability of naked RNA
molecules in serum and their fast renal clearance. Chemically modi-
fied inhibitory RNA molecules have been developed to avoid innate
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immune recognition and degradation by nucleases.11 However, these
modifications are proven to be a “double-edged sword,” as unnatural
nucleotides may be immunogenic or toxic. For example, profound
hepatotoxicity was reported for locked nucleic acid (LNA)-modified
nucleic acids.12

Lymphocytes are highly resistant to transfection using conventional
transfection reagents (e.g., cationic lipids or synthetic polymers).13,14

There is relatively little information available about the cellular mech-
anism of lymphocyte transfection resistance. In general, lymphocytes
differ in morphology compared to other cells; for example, their
thinner cell membrane and lower protein content cause them to
be more sensitive and hence harder to transfect than adherent
cells.15,16 Transfection of lymphocytes, using conventional transfec-
tion reagents, is shown to lead to tumor necrosis factor (TNF)-
alpha secretion, apoptosis, and necrosis.17,18 Another contribution
to lymphocyte transfection resistance may be contributed due to
the lack of cell surface heparan sulfate (HS) proteoglycans, which is
caused mainly due to low expression levels of exostosin-1, a key
enzyme in the biosynthesis of HS.19 HS proteoglycans donate a nega-
tive charge to the cell surface. Its low expression level on lymphocytes,
in comparison to adherent cells, leads to a relatively high positive sur-
face charge. This might increase the sensitivity of lymphocytes to cell
lysis by conventional cationic transfection reagents due to excess local
positive charge. It should be noted that although electroporation and
nucleofection have been successful transfection techniques in lym-
phocytes,20 they can result in reduced cell viability and are unsuitable
for in vivo applications.

Lymphocytes express a variety of Toll-like receptors (TLRs) and other
RNA-sensing machineries such as retinoic acid-inducible gene-1
(RIG-1) and double-stranded RNA (dsRNA)-dependent protein ki-
nase (PKR), which can recognize RNAi molecules and induce an in-
flammatory response.21,22 Furthermore, it is known that the RNAi
machinery in T lymphocytes appears to be inefficient in comparison
with other adherent cell lines.23 Moreover, in vivo, lymphocytes are
dispersed all over the body and are often located in deep tissues; there-
fore, it is challenging to reach them. Thus, the key to success in the
delivery of RNAi molecules to lymphocytes in vivo is particularly
dependent on a suitable delivery system. Delivery of RNAi molecules
to lymphocytes needs to be mediated by targeted conjugates or parti-
cles that will protect the RNAi molecules from degradation and renal
clearance, recognize the target cells specifically, and mediate efficient
internalization of RNAi molecules into the lymphocyte cytoplasm
with minimal toxicity.

Thus far, RNAi-based therapies have reached clinical trials for the
treatment of liver diseases and solid tumors, while applications in
lymphocytes lag behind.2 This is because the delivery to lymphocytes,
as mentioned above, adds more levels of complexity than delivery to
other cell types. Here, we will cover the latest progress in the delivery
of RNAi molecules to lymphocytes using non-viral vectors. We will
focus on various strategies designed for the delivery to specific subsets
of lymphocytes for various applications. Special emphasis will be
1492 Molecular Therapy Vol. 25 No 7 July 2017
placed on the multiple challenges and potential opportunities
achieved upon successful manipulation of lymphocyte function
with RNAi-based therapeutics.

Nanoparticle-Based RNAi Delivery to Lymphocytes

Targeted RNAi delivery systems possess multiple advantages over
untargeted systems, as they increase the therapeutic index, reduce
toxicity, and improve patient compliance. Targeted delivery is
possible by the addition of a specific antibody, ligand, or ligand
mimetic to the surface of the nanoparticle that would mediate the tar-
geting and internalization of the RNAi payload into cells.24 Several
strategies have been utilized to deliver RNAi molecules into lympho-
cytes, including lipid nanoparticles (LNPs), aptamer (apt)-small
interference RNA (siRNA) conjugates, antibody-siRNA conjugates,
and polymer-based nanoparticles (Figure 1).

The development of more stable, chemically modified oligonucleo-
tides creates an opportunity to deliver naked molecules as conjugates
equipped with cell-specific targeting moieties, such as receptor li-
gands, monoclonal antibodies, or apts.

Apt-siRNA Conjugates

Apts are small-sized (6–30 kDa,�2 nm in diameter) synthetic single-
stranded DNA or RNA molecules with the ability to fold into three-
dimensional structure complexes. Using the SELEX (systematic
evolution of ligands by exponential enrichment) combinatorial chem-
istry process, apts can be selected from a large pool of sequences
against various target molecules such as toxins, antibiotics, amino
acids, peptides, proteins, or whole living cells. Candidate binding se-
quences are then subjected to iterative selection rounds to increase the
population of high-affinity species, until they eventually dominate in
the library.25 Apts not only combine the advantages of monoclonal
antibodies, such as high affinity, superior specificity, and low toxicity
or immunogenicity, but they are also easy to synthesize, modify, and
manipulate. As such, they are usually called chemical antibodies. Apts
with high affinity and selectivity to lymphocyte antigens can be linked
to inhibitory oligonucleotides to produce multifunctional compounds
for targeting lymphocytes and modulating gene expression. A very
extensive review on apt-based therapeutics was recently published.25

Several recent studies have demonstrated a promising ability of apt-
conjugated siRNA chimeras (AsiCs) to promote in vivo gene silencing
of T lymphocytes. Wheeler et al.26 developed an AsiC for targeting
in vivo HIV-infected CD4+ T lymphocytes. The authors used a
CD4 apt linked to siRNA molecules against chemokine C-C chemo-
kine receptor type 5 (CCR5), which is required for HIV cell entrance
and transfection. Prophylactic intravaginal administration of these
CD4-AsiCs protected against HIV genital transmission in humanized
mouse models without stimulating innate immunity. An alternative
strategy for treatment of HIV infection, presented earlier by Neff
et al.,27 comprises an RNA apt with high binding affinity to the
HIV-1 envelope glycoprotein gp120. This apt was attached to siRNA
that triggers degradation of the HIV-1 tat/rev RNAs that encode early
regulatory proteins required for HIV replication. This approach
significantly improved the overall antiviral effect of the gp120
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Figure 1. RNAi Delivery Strategies Available for

Lymphocytes

(A) SNALP coated with specific ligand molecules encap-

sulated with siRNAs. (B) Apt-siRNA conjugate. (C) Cationic

polymer-based nanoparticles encapsulated with plasmid

DNA and siRNAs. (D) Single-chain variable fragment

(scFv)-siRNA conjugate. (E) Antibody-protamine fusion

protein-siRNA conjugate.
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apt-siRNA chimera in comparison with the apt alone, as tested in a
humanized mouse model of HIV infection. A CCR5 apt that was
selected by a live cell-based SELEX process was shown to target
HIV-susceptible cells (CD4+ T lymphocytes and monocytes) via the
CCR5 receptor. Although CCR5 apt-siRNA chimeras (CCR5-AsiCs)
protected human CD4 T lymphocytes from HIV infection with a
nanomolar inhibitory concentration,28 their efficacy in vivo remains
to be determined.

Two recent studies utilized apts targeting either inhibitory or stimu-
latory receptors on T-cell subsets, in order to augment the efficacy
and persistence of anti-tumor immune responses.29,30 Herrmann
et al.30 reported the use of this strategy, in which a cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4) apt was conjugated to
signal transducer and activator of transcription 3 (STAT3) siRNA
(CTLA4-AsiCs). CTLA4-AsiCs successfully delivered STAT3 siRNA
to tumor suppressor CD8+ T lymphocytes, T regulatory cells (Tregs),
as well as CTLA4-expressing malignant T lymphocytes. Systemic
administration of CTLA4-AsiCs robustly inhibited tumor growth
and metastasis in various mouse tumor models, including immuno-
deficient mice bearing human T-cell lymphomas. To specifically
target activated CD8+ T lymphocytes, Berezhnoy et al.29 conjugated
siRNA targeting the mTORC1 component raptor to an apt that binds
4-1BB, a costimulatory molecule that is expressed on CD8+ T lym-
phocytes following T-cell receptor (TCR) stimulation. Mechanistic
target of rapamycin (mTOR) signaling is known to promote the dif-
ferentiation of activated CD8+ T lymphocytes into short-lived effec-
tors rather than memory cells, thereby resulting in a potent but
only transient immune response. The authors found that systemic
administration of 4-1BB-AsiCs to mice downregulated mTORC1 ac-
tivity in the majority of CD8+ T lymphocytes, leading to the genera-
M

tion of a potent memory response that exhibited
cytotoxic effector functions and enhanced vac-
cine-induced protective immunity in tumor-
bearing mice.

Most recently, the same group utilized the
4-1BB-CD25 and 4-1BB-Axin-1 apts for a
similar purpose: specific modulation of CD8+

T-lymphocyte differentiation into long-lasting
memory CD8+ T lymphocytes.31 The authors
attenuated interleukin (IL)-2 signaling in order
to achieve anti-tumor immunity. In an in vivo
breast cancer model, the authors showed tumor
infiltration by CD8+ T lymphocytes and an increase in tumor suscep-
tibility to secondary treatment implemented, in parallel with the
apt-siRNA conjugate.32

Apt-short hairpin RNA (shRNA) conjugates were also engineered
for lymphocyte targeting. Recently, Soldevilla et al.33 presented a
CD40apt-shSMG1 for cancer immunotherapy. The authors utilized
HS-SELEX to identify three CD40 therapeutic constructs: a CD40
agonist bivalent apt, a CD40 antagonist apt, and a CD40 agonistic
apt-shRNA chimera. While the agonist led to proliferation and acti-
vation of B lymphocytes and accelerated recovery of bone marrow
aplasia, the antagonist apt showed a direct anti-tumor effect in
a B-cell lymphoma model. Upon conjugation to shRNA against
SMG1, a serine/threonine kinase essential for nonsense mRNA-medi-
ated decay (NMD), the authors managed to show improved tumor
infiltration and survival.34 The highly promising concept of NMD
inhibition is relatively new to cancer immunotherapy and was devel-
oped by Pastor et al.,34 who showed that NMD inhibition in tumor
cells led to the expression of new cancer antigens and therefore
increased their immune-mediated recognition and rejection.

Although most siRNA-apt conjugates described in the literature are
chimeras, recent advances have been reported that utilize bridge
structures in order to improve the utility of apt conjugates. Since chi-
meras are synthesized as two pieces followed by an annealing step or
synthesized as one piece, they require a specific preparation for each
siRNA sequence. Systems that utilize molecular platforms or sticky
bridge linkers enable non-covalent binding and therefore allow inter-
change of various siRNAs with the same apt.35 In the sticky bridge
systems, the apt and the siRNA are bound to complementary gua-
nine-cytosine (GC)-rich bridge sequences and annealed simply by
olecular Therapy Vol. 25 No 7 July 2017 1493
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mixing, which allowsWatson-Crick base pairing.25 Such a system was
recently utilized by Zhou et al.35 for the delivery of dicer-substrate
short interfering RNAs (DsiRNA) cocktails into T lymphocytes,
which resulted in potent inhibition of HIV replication. Another alter-
native presented by Zhou et al.36 for the delivery of siRNA cocktail
into peripheral blood mononuclear cells (PBMCs) is an apt chimera
consisting of packaging RNA from the bacteriophage 429 DNA
packaging motor; however, this system was not tested in vivo. An
additional alternative for covalent conjugation includes apt-streptavi-
din-siRNA conjugates, although these systems have not yet been
tested in lymphocytes.25

Protein-siRNA Conjugates

Antibody-siRNA Conjugates. The first antibody-siRNA conju-
gates for systematically targeting of immune cells were designed as
fusion proteins. These fusion proteins are composed of a cell-target
antibody fragment joined to a protamine peptide that binds nucleic
acids, such as siRNAs. This approach was used first to deliver
siRNAs into tumors implanted inmice thatwere engineered to express
T-cell surface antigens, HIV envelope proteins, or human integrin
lymphocyte function-associated antigen-1 (LFA-1) (Figure 1E).37,38

Kumar et al.39 modified this approach and generated a fusion protein
consisting of a scFv against CD7 (a panT-lymphocyte protein) and the
nona-d-arginine (9R) peptide (scFvCD7-9R) for systemic targeting of
T lymphocytes (Figure 1D). scFvCD7-9R efficiently delivered CD4
siRNAs to naive T lymphocytes in humanized mice, and it effectively
inhibited HIV infection in these mice when combined with siRNAs
targeting CCR5, Vif, and Tat. However, antibody-based fusion pro-
teins are expensive to manufacture, are potentially immunogenic,
and therefore are probably less suitable for clinical use.

Chemokine-siRNA Conjugates. Biragyn et al.40 provided a novel
and simple solution for the use of RNAi in vivo by delivering inhib-
itory oligonucleotides with chemokines to inactivate a selective subset
of immune cells. The authors created chemokine CCL17 (TARC-arp)
modified to bind oligonucleotides by linking it with a 15-amino-acid
fragment of a single-stranded DNA/RNA-binding portion of the
capsid antigen of hepatitis B virus (HBV). The chemokine mediates
chemotaxis of the desired cells and internalization of siRNA through
binding to chemokine receptors. Biragyn et al. showed that TARC-
arp can transduce CCR4-expressing CD4+ T lymphocytes and Tregs
with siRNA transiently silencing the genes of interest. TARC-arp-
mediated silencing of IL-10 or FoxP3in CCR4+ Tregs is sufficient to
block lung metastasis in a breast cancer mouse model.

Supramolecular Nanocarriers

In comparison to antibody- or apt-siRNA conjugates, supramolecular
nanocarriers (NCs) provide additional benefits, because they are
shown to protect against both rapid renal excretion and nuclease
cleavage, reduce unwanted immune response, enable delivery of oli-
gonucleotides in combination with either soluble or insoluble drugs,
controlled drug-release mechanisms, and improve intracellular pene-
tration.41 Multiple aspects of NCs can be controlled in order to tailor
the optimal NC for a specific condition, including size, shape, and
1494 Molecular Therapy Vol. 25 No 7 July 2017
surface chemistry. For instance, formulations of NCs that range
between 100 and 200 nm are determined to be optimal for long cir-
culation in the bloodstream, since at this specific size range they
can avoid uptake by the reticuloendothelial system (RES), also known
as the mononuclear phagocytic system (MPS). In addition, hydro-
philic surfaces created by coating NCs with either poly(ethylene
glycol) (PEG) or hyaluronan (HA) endow nanoparticles (NPs) with
long circulation times.41 NCs can also provide a mechanism for
slow release of the therapeutic cargo, such as activated release that
breaks the bonds between the drug and NC or leads to particle degra-
dation or efflux of the drug from the NC. All of the above were shown
to improve therapeutic efficacy in comparison to non-formulated ol-
igonucleotides, following several parameters such as improved gene
silencing and increased therapeutic outcome withminimal adverse ef-
fects.42 Although a variety of NCs were developed for delivering ther-
apeutic RNAi molecules to tumors (liposomes, lipid-based particles,
polyplexes, lipoplexes, dendrimers, polymeric nanoconjugates, and
more), only some are shown to effectively induce gene silencing in
lymphocytes upon systemic administration as detailed below.43

Polymer-Based Nanoparticles. Polymer-based RNAi delivery
often utilizes cationic polymers such as poly(L-lysine) (PLL) and pol-
yethylenimine (PEI) due to their immense chemical diversity and
their potential for functionalization.44 The high positive charge den-
sity at reduced pH may enable both nucleic acid condensation and
endosomal escape.45 Nevertheless, these polymers have been shown
to induce adverse effects such as cytotoxicity and unwanted immune
activation.46 Therefore, several chemical modifications have been
tested in order achieve improved stability and biocompatibility.42,47

SNS01-T (NCT01435720) is the most advanced polymer-based sys-
tem that is now in clinical trials (phase I/II) for the treatment of
relapsed or refractory multiple myeloma and B-cell lymphoma.
SNS01-Ts are PEI nanoparticles that contain both siRNA and a decoy
DNA plasmid (Figure 1C). The siRNA sequence targets eukaryotic
translation initiation factor 5A (eIF5A) while the plasmid DNA ex-
presses a non-hypusinable mutant of eIF5A (K50R), which induces
apoptosis under a B-cell-specific promoter. Although these positively
charged nanoparticles are untargeted, the enhanced tumor cell uptake
and relatively low toxicity suggest that SNS01-T preferentially targets
malignant cells. Using local and systemic administration methods of
the siRNA-DNA chimeric NPs, Francis et al.48 showed significant
growth inhibition of multiple myeloma tumors and an increased
survival rate in a human myeloma xenograft mouse model.

Dendrimers, previously known as “starburst polymers,” are a class of
synthetic, highly branched, and positively charged polymers.49,50

Dendrimers have been studied extensively for their potential applica-
tion as carriers for nucleic acids due to their unique characteristics,
which include monodispersity, uniformity, and the presence of
numerous functionalizable terminal groups.49,50 As with other posi-
tively charged polymers, nucleic acid condensation is mediated by
the cationic charge. Carbosilane dendrimers and poly(amidoamine)
(PAMAM) dendrimers have been complexed with siRNA for the
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purpose of suppressing HIV infection.51,52 Due to the fact that no co-
valent binding is required for siRNA complexation, dendrimers can
be used as a platform for the delivery of different siRNA molecules
targeting both viral and cellular transcripts.52 Although not targeted,
Zhou et al.52 have shown complete inhibition of HIV-1 titers
and protected against viral-induced CD4+ T-cell depletion by the
PAMAM dendrimer. Targeted dendrimers have also been reported
for the purpose of drug delivery to lymphocytes in vitro and in vivo;
however, these formulations have not yet been utilized for nucleic
acid delivery.53

LNPs, Liposomes, and SNALPs. LNPs were the first nanopar-
ticle delivery system approved by the US Food and Drug Administra-
tion (FDA),54 for many great reasons. LNPs are characterized by their
general biocompatibility, biodegradability, isolation of drugs from the
surrounding environment, and the ability to entrap both hydrophilic
and hydrophobic drugs41 and their production scale-up is cost-effec-
tive. In addition, multiple properties of LNPs can be altered via sur-
face chemistry, including their size, charge, and surface functionality,
simply by adding new components to the lipid mixture before LNP
preparation and/or by varying the preparation methods.41 There
are several subclasses of LNPs, including liposomes, micelles, and
stabilized nucleic acid lipid particles (SNALPs).

Liposomes are spherical, self-closed structures formed by one or
several concentric lipid bilayers with an aqueous phase inside and be-
tween different shells of multilayered particles.55 To date, more than
13 liposomal formulations have been approved by the FDA, due to
their multiple benefits. Liposomal formulations encapsulating siRNA
manage to overcome the limitations of antibody-protamine fusion
protein and apt-siRNA fusion systems, as they manage to increase
the amount of payloads and simplify the preparation procedures.
Liposomal siRNA formulation eliminates the laborious molecular
biology techniques of protein engineering and the purification
methods required for the formation of each fusion protein.24,56

Therefore, liposomal formulations manage to achieve robust, targeted
gene silencing in leukocytes in vivo.24 This was first demonstrated
by utilizing liposomes that were surface modified with an anti-integ-
rin monoclonal antibody, termed integrin-targeted and stabilized
nanoparticles (I-tsNPs).57 The siRNA was encapsulated within the
I-tsNP upon rehydration of lyophilized particles with deionized water
containing protamine-condensed siRNAs. This system is basically a
platform technology, as it is possible to target different lymphocytes
subsets by simply changing the antibody on the surface of these
NPs as detailed below. Upon systemic administration, this system
successfully silenced Cyclin D1 in leukocytes and reversed experi-
mentally induced colitis in mice by suppressing leukocyte prolifera-
tion and T-helper cell 1 cytokine expression.

In order to explore whether the I-tsNP system can indeed be defined
as a platform technology, it was tested with a different surface anti-
body: the anti-aLb2 integrin (LFA-1), which is highly expressed on
all leukocytes.58 The system was used for systemic delivery of CCR5
siRNA in a humanized murine model.
LFA-1 I-tsNPs were selectively taken up by T lymphocytes and mac-
rophages, the prime targets of HIV, and silencing was sustained for
10 days. Finally, humanized mice challenged with HIV after anti-
CCR5 siRNA treatment showed enhanced resistance to infection, as
assessed by the reduction in plasma viral load and disease-associated
CD4+ T-lymphocyte loss. Therefore, this demonstrates the potential
application of the LFA-1 I-tsNP system as anti-HIV prophylaxis.
Another liposomal system for the delivery of RNAi, named
SMARTICLES, was developed by Marina Biotech. SMARTICLES
are composed of a unique combination of lipids having anionic and
cationic groups that work together to enable cell uptake and provide
serum stability and pH-triggered endosomal escape. This system
is currently under evaluation in a phase I dose-escalation clinical
trial for delivery of miR34 (MRX34) for patients with advanced
cancer with primary liver and hematological malignancies, multiple
myeloma, and lymphoma (NCT01829971).

SNALPs are one of the most advanced strategies for siRNA delivery,
due to their high siRNA encapsulation efficiency, low immunogenic
properties, and potent gene knockdown in humans.59,60 This new
generation of LNPs was originally designed by Pieter Cullis’s lab-
oratory and is extensively reviewed elsewhere.61,62 SNALPs are
composed of ionizable lipids in addition to polyethylene glycol-
conjugated (PEGylated) lipids, cholesterol, and nucleic acids (Fig-
ure 1A).63 The degree of unsaturation and the ionizable head groups
are crucial for efficient transfection and endosomal escape, which is
one of the major obstacles upon designing drug delivery systems.64,65

SNALPs can be produced using microfluidic mixing technology (Fig-
ure 2).62,66,67 This robust method possesses several advantages over
conventional liposomes preparation, including the fact that it is
much less laborious, enables higher nucleic acid encapsulation effi-
ciency, and decreases batch-to-batch variability, resulting in consis-
tent production. SNALPs are neutrally charged in the circulation,
where they associate with apolipoproteins (in particular, apolipopro-
tein E3), which mediate their endocytosis, primarily by hepatocytes
and monocytes.68,69 Once inside the endosome, the low pH leads to
lipid protonation, which triggers endosomal membrane destabiliza-
tion and the subsequent cytosolic release of some of its nucleic acid
cargo. The first-generation SNALPs were composed of 1,2- dilinoley-
loxy-3-dimethylaminopropane (DLinDMA) and potently knocked
down genes in the liver of rodents and non-human primates.70 Never-
theless, upon evaluation in clinical trials, this formulation showed
limited liver gene knockdown and induced unwanted innate immune
activation, such as activation of the complement system. The second-
generation SNALPs showed substantially improved siRNA delivery
and knockdown effectiveness in the liver. Constructed with the
anionic lipid dilinol eylmethyl-4- dimethylaminobutyrate (DLin-
MC3-DMA), these NPs mediated potent gene knockdown in humans
at reduced doses compared with first-generation SNALPs.59 Upon
systemic administration, most SNALPs naturally accumulate in liver
cells and were therefore utilized for the treatment of liver viral infec-
tions and tumors.60 Using this technology to treat disseminated dis-
eases such as leukemia and lymphoma is even more challenging.
Such an effort was recently initiated in a dose-escalation phase I study
Molecular Therapy Vol. 25 No 7 July 2017 1495

http://www.moleculartherapy.org


Figure 2. Schematic Diagram of the Production

Process of Targeted LNPs

Lipids including the ionizable lipid and PEG-maleimide

dissolved in ethanol and siRNAs in acetate buffer are

combined by the microfluidic mixer to produce malamide-

functionalized LNPs. Reduced immunoglobulin Gs (IgGs)

are conjugated with maleimide-functionalized LNPs to

produce targeted LNPs (tLNPs). To remove unconjugated

antibody, tLNPs are purified by gel filtration chromatog-

raphy. mAb, monoclonal antibody.
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by Dicerna Pharmaceuticals. Dicerna uses a dicer substrate RNAi-
based therapy encapsulated in SNALPs, which was designed to silence
the Myc oncogene (DCR-Myc) in liver tumors and selected solid
tumors, but also in patients with multiple myeloma and non-
Hodgkin’s lymphoma (NCT02110563).

The use of targeted lipid nanoparticles (tLNPs) is a more promising
approach, especially upon targeting specific lymphocyte subsets or
treating disseminated diseases (Figure 2). In a recent study, we
described a novel strategy to specifically deliver siRNAs into murine
CD4+ T lymphocytes using tLNPs. The tLNPs were surface function-
alized with anti-CD4 monoclonal antibodies to permit delivery of the
siRNAs specifically to CD4+ T lymphocytes. Systemic intravenous
administration of these particles led to efficient binding and uptake
into CD4+ T lymphocytes, which was followed by CD45 silencing.71

Weinstein et al.72 recently described a similar strategy to specifically
deliver siRNA against cyclin D1 to mantle cell lymphoma (MCL)
cells in a human MCL-xenograft mouse model. LNPs coated with
anti-CD38 monoclonal antibodies and loaded with siRNAs against
cyclin D1 induced gene silencing in MCL cells and prolonged
survival of tumor-bearing mice with no observed adverse effects.
These results present a unique RNAi delivery system that opens
new therapeutic opportunities for treating MCL and other B-cell
malignancies.

Conclusions

The past 10 years have been very exciting with substantial advances
achieved in the field of nanoparticle-based delivery systems and the
discovery of RNAi. Several promising delivery systems have been
introduced due to the development of new materials and NP prepa-
ration techniques such as microfluidics. Utilizing the progress made
in materials science and engineering enabled major achievements in
the robust, rapid, and reproducible production of drug delivery sys-
tems. Other improvements include better NP stability and reduced
toxicity and immune activation. Furthermore, the potency of nu-
cleic acids as a therapeutic payload has improved dramatically.
Combining this with the advances in the field of genomics and
next-generation sequencing enables the possibility to identify new
gene targets for precise and possibly personalized RNAi-based
therapeutics.

Nevertheless, the development of NPs for efficient systemic RNAi de-
livery remains a daunting task, particularly in regard to lymphocytes.
1496 Molecular Therapy Vol. 25 No 7 July 2017
This is also the major obstacle in translating the knowledge obtained
from biomedical research into clinical therapeutics.73,74

The ability to actively target lymphocytes holds great promise and
opens novel therapeutic possibilities in the context of inflamma-
tion, autoimmune response, transplant rejections, viral infections
such as HIV, and hematologic malignancies.24 The improved deliv-
ery of RNAi-based therapeutics to lymphocytes can also hold great
promise in cancer immunotherapy, which has been gaining more
attention in cancer therapy. To date, upon examining the recent
progress achieved in the field of RNAi delivery to lymphocytes, it
appears that targeted delivery systems that utilize specific ligands
or antibodies are the most promising. As lymphocytes are dissem-
inated throughout the body and are often located in deep tissues,
passive targeting and organ localization methods are much less
effective. In addition, targeted systems not only improve the ther-
apeutic index and reduce toxic effects in comparison to untargeted
systems but also allow for the manipulation of specific lymphocyte
subsets, which is required in the example of immune modulation in
cancer therapy. The targeting moiety itself should also be carefully
chosen, as not every surface receptor is suitable for targeting. An
optimal targeting moiety should match the required outcome
whether it is subset specific or pan T cell. In addition, utilizing
cell surface receptors that undergo continuous endocytosis (e.g.,
CD4) supports siRNA internalization.9,26 Recent gene expression
analysis has shed more light on appropriate potential cell surface
targets.75–77 Targeting moieties for lymphocytes are not only subset
specific, but certain cell surface receptors (e.g., LFA-1) go through
activation-dependent modification. LFA-1 is found in its low-
affinity non-adhesive form in naive cells and is converted into a
high-affinity conformation upon lymphocyte activation.78,79 This
enables specific targeting of activated lymphocytes which is a highly
desirable outcome for the therapy of inflammations such as inflam-
matory bowel disease (IBD). Additional surface molecules that are
upregulated in activated lymphocytes include CCR5, CD69, CD25,
CD40L, and TNF receptor superfamily member 4 (TNFRSF4).6 In
any case, the targeting moiety used would require “humanization”
for subsequent clinical translation. Other hurdles in targeted gene
silencing in lymphocytes are related to the nature of lymphocytes,
which include a different membrane structure and less efficient
RNAi machinery.19,23 This explains why delivery systems for inhib-
itory RNA molecules designed for solid tumors often fail to target
lymphocytes.
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Table 1. RNAi Delivery Systems that Managed to Silence Lymphocytes In Vivo

Drug Vehicle Target
Targeting
Moiety siRNA Conjugation Technique Route Condition Reference

CD4-AsiCs apt-siRNA conjugate CCR5 CD4 covalent linkage IVAG HIV 26

Ch A-1 apt-siRNA conjugate HIV-1 tat/rev RNAs gp120 covalent linkage i.v. HIV 27

4-1BB-AsiCs apt-siRNA conjugate mTORC1 4-1BB covalent linkage i.v. solid tumors 29

CTLA4-AsiCs apt-siRNA conjugate STAT3 CTLA4 covalent linkage i.v. T cell lymphoma 30

4-1BB apt-CD25
siRNA

apt-siRNA conjugate CD25, Axin-1 4-1BB covalent linkage i.v. solid tumors 31

CD40Apt-
SMG1-shRNA

apt-shRNA conjugate SMG1 CD40 covalent linkage i.v. B cell lymphoma 33

gp120 A-DsiRNA apt-siRNA conjugate
HIV-1 tat/rev, CD4
and TNPO3

gp120 30 7-carbon linker i.v. HIV 35

LFA-1 protamine antibody-siRNA conjugate Ku70 LFA-1 protamine condensation i.v.
activated leukocyte
populations

6

scFvCD7-9R antibody-siRNA conjugate CD4, CCR5, Vif, and Tat CD7 oligo-9-arginine peptide i.v. HIV 39

TARC-arp CCL17-siRNA conjugate IL-10, FoxP3 CCR4
DNA/RNA-binding portion of
the capsid antigen of HBV

i.v. lung cancer 40

SNS01-T PEI-based nanoparticle
siRNA eIF5A, and plasmid
NH mutant of eIF5A

untargeted polyelectrolyte complexation i.v. B cell malignancies 48

PAMAM
dendrimer

cationic PAMAM dendrimers
HIV-1 tat/rev, CD4,
and TNPO3

untargeted
ionic crosslinking of siRNA
to PAMAM

i.v. HIV 52

I-tsNP targeted HA-coated liposomes CCND1 LFA-1 protamine condensation i.v. colitis 57

I-tsNP targeted HA-coated liposomes CCR5 LFA-1 protamine condensation i.v. HIV 58

tLNPs LNPs CD45 CD4 complexation with ionizable lipids i.v. healthy mice 71

tLNPs LNPs CCND1 CD38 complexation with ionizable lipids i.v. MCL 72

apt, aptamer; AsiC, aptamer-conjugated siRNA chimera; DsiRNA, dicer-substrate short interfering RNA; HA, hyaluronan; HBV, hepatitis B virus; I-tsNP, integrin-targeted and sta-
bilized nanoparticle; IL, interleukin; i.v., intravenous; IVAG, intravaginal; LNP, lipid nanoparticle; MCL, mantle cell lymphoma; PAMAM, poly(amidoamine); PEI, polyethylenimine;
shRNA, short hairpin RNA; siRNA, small interference RNA; tLNP, targeted lipid nanoparticle.
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Upon examining delivery systems that managed to modify lympho-
cyte gene expression in vivo (summarized in Table 1), the most
abundant systems are apt conjugates. This can be attributable to
their small size (�2 nm in diameter versus 15 nm for antibodies
or �80 nm for LNPs), which enables deep-tissue extravasation
and subsequent nucleic acid delivery to lymphocytes. In compari-
son to antibodies, the size and flexibility of apts allows them to
bind smaller targets and hidden binding domains.25 In addition,
apt production is much less lengthy, laborious, and expensive, as
the production is performed via a cost-efficient in vitro selection
procedure that is characterized by lower batch-to-batch varia-
tions.25 Other advantages include lower immunogenicity in com-
parison to antibodies and a potentially infinite spectrum of target
antigens. Nevertheless, apt-based therapeutics still lag behind
antibody-based therapeutics, with only one FDA-approved prod-
uct.25,80 This can be attributed to the fact that apt-based therapeu-
tics are still in their infancy and their safety profile requires further
evaluation.81 In addition, non-conjugated apts are characterized by
low circulation time and rapid renal clearance in comparison to an-
tibodies and supramolecular carriers due to their small size. Yet
both apts and protein-siRNA conjugates fall short in the amount
of nucleic acid payload delivered to cells in comparison to supra-
molecular carriers. While liposomes can entrap thousands of
siRNA molecules (I-tsNPs are characterized by an �4,000:1 ratio
of siRNAs to NP), antibodies can only bind five to six siRNA
molecules after fusion to protamine (and much less without
fusion).38,39,57,82 Another advantage of LNPs comes from a
manufacturing perspective, as SNALPs prepared using microfluidic
mixing technology are highly reproducible and utilize a short one-
step preparation procedure. This is a great benefit, particularly for
production under current good manufacturing practice (cGMP)
standards.

An additional consideration is the conjugation of siRNA to the car-
rier; non-covalent attachment of siRNA appears to be the preferred
option, as it facilitates the interchange of various siRNAs with
the same carrier and can therefore be utilized as a platform.35,52

Such platforms will be easier to translate to the clinic, as they are
more robust and cost-effective. Similarly, cationic polymers and
lipids also do not require chemical conjugation (as the attachment
is charge based); however, they may lead to toxicity and unwanted
immune activation.83–85 Thus, ionizable polymers and lipids may
be the best choice for polyelectrolyte complexation with nucleic
acids.
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Modulation of gene expression in lymphocytes possesses additional
challenges. As these cells are immunostimulatory by nature, harmful
outcomes such as unwanted immune activation and induction of
autoimmunity should be avoided. One methodology is utilizing
monovalent as opposed to multivalent targeting moieties, as monova-
lent targeting (although it possesses lower affinity) is much less likely
to lead to lymphocyte activation. This has been shown in both apts
and antibodies.58,86

Additional barriers to the clinic are not lymphocyte specific but
are related to the delivery of nucleic acids in general. These barriers
and routes to overcome them have been extensively reviewed
elsewhere.74

As our understanding regarding lymphocyte biology at different set-
tings deepens, so too do the potential therapies. Recent developments
in nanoparticle and conjugate formulation, fueled by this immense
therapeutic potential, have led to successful systemic delivery of
RNA molecules with reduced toxicity. Eventually, a deeper under-
standing of lymphocyte biology, better selection of targeting moieties,
and improved structure-function relationships of nanoparticle deliv-
ery systems could provide great benefit in the delivery of RNAi-based
therapeutics to lymphocytes. These advances will later pave the way
for the delivery of mRNA and gene editing methods such as the
CRISPR-Cas system, in which the challenges for effective delivery
are even greater.
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